

EDA/Interface A Overview

A brief introduction into the SEMI Interface A Equipment Data Acquisition (EDA) Standards

- EDA = <u>Interface A</u>
 - Terms are synonymous and common
- SEMI Standards
 - <u>E120</u>, <u>E125</u>, E128, <u>E132</u>, <u>E134</u>, E138, <u>E164</u>
- Adoption growing since 2006

Where EDA fits Manufacturing equipment context

Integrated Device Manufacturer Software

Semiconductor Equipment

EDA standards background Original industry motivation and benefit

- GEM/GEM 300 interface is associated with the MES system and cannot be changed or interrupted easily
 - Weeks/months to alter data collection
- Needed flexible approach for collecting and distributing high-density real-time equipment and process data
 - Fault detection algorithms were evolving from lot-level post-process application to within-process diagnosis and tool interdiction capabilities
 - Run-to-run control applications moving from lot level to wafer level
- Only alternatives were custom interfaces or vendor-specific data collection systems (i.e., expensive)
- EDA opened the door for standard approach across tool types supporting a common client/host data collection system
 - Enables process engineers to modify data collection plans to access needed information in minutes

How the EDA services work together

Key Features of Interface A

- Data gathering only
 - SECS/GEM and GEM300 Control/Configuration
 - Events, Exceptions, Parameters, E39 objects
- Multiple independent client access
 - Semiconductor manufacturer
 - Third party
 - Equipment supplier
- Restricted access
 - Access based on client credentials

Key Features of Interface A

- Self-Describing interface
 - Minimal documentation required
 - Enables Intelligent Clients
- Common Internet technology
 - Web Services
 - HTTP/SOAP using XML Schemas
- Data context
 - Data is associated with equipment components

Original Equipment Expectations Implementation architecture and performance

- Equipment internals behind the EDA interface must be designed to provide dedicated high-throughput data acquisition while maintaining equipment run rates
- For this reason, ISMI will be focusing on current and future generations of 300 mm tools for EDA implementation

Current EDA requirements Performance expectations

- GEM-based data collection limitations
 - Maximum trace data frequency typically 1 Hz
 - Collection event granularity aligned with substrate movement and recipe start/stop
 - Sufficient for material tracking, OEE monitoring and lot-level FDC and R2R control
 - GEM interface fixed or "locked down" to avoid tool performance problems
- Process engineers needed more/better data on their terms
 - At least 10 Hz frequency at recipe step boundaries
 - 100 Hz frequency for critical, rapidly changing parameters
 - Precise data "framing" for advanced predictive algorithms
 - Dynamic sampling in response to changing process conditions
 - Define new data collection plans (within limits) without additional sign-off

nnect "CIM300" CIMPortal Plus EDAC

SEMATECH Freeze Versions

- <u>SEMATECH/ISMI</u> defined freeze versions to facilitate client/equipment compatibility
- Freeze Version I (1105)
 - Widely available
- Freeze Version II (0710)
 - Limited availability, implementations emerging
 - Best when implemented with <u>E164</u> & <u>E157</u>

Establish Communication

E132 Specification for Client Authentication & Authorization

Authentication process

Session lifecycle

E132 - Equipment Services

EstablishSession

 Request to establish a new authenticated session and to set the client endpoint, the consumer for all notifications from the equipment

PersistSession

 Request the Equipment to maintain the session, even after shutting down the Equipment

SessionPing

A check to see if the Equipment is still active

CloseSession

Request to terminate the session

E132 - Client Services

- SessionPing
 - Used by the equipment to check if the client is still active
- SessionFrozen
 - Notification to the client that the session will be frozen
- SessionClosed
 - Used by the equipment to close an active session

E132 - Equipment Admin Services

- GetDefinedPrivileges
 - Request the list of all defined privileges
- GetACL
 - Request the list of all defined Access Control List entries
- AddACLEntry
 - Add a new ACL entry
- DeleteACLEntry
 - Delete an existing ACL entry
- GetActiveSessions
 - Request the list of information on all active sessions
- SetMaxSessions
 - Sets the maximum number of active sessions
- GetMaxSessions
 - Requests the maximum number of active sessions

Equipment Modeling

E120 Specification for the Common Equipment Model E125 Specification for Equipment Self-Description E164 EDA Common Metadata

Plus EDAConnect ECCE Plus CIMControlFramework

E120 Common Equipment Model Relationship view of node types

E120 Common Equipment Model Inheritance Hierarchy

E120 and E125 together Structure and behavior of equipment model

E125 - Equipment Services

- GetUnits
 - Retrieves unit metadata
- GetTypeDefinitions
 - Retrieves parameter type metadata
- GetSemiObjTypes
 - Retrieves E39 object type metadata
- GetExceptions
 - Retrieves exception metadata
- GetStateMachines
 - Retrieves state machine metadata

E125 - Equipment Services

- GetEquipmentStructure
 - Retrieves all equipment node metadata in a hierarchal structure
- GetEquipmentNodeDescription
 - Retrieves individual equipment node metadata including:
 - Parameters associated with this node
 - E39 objects/SEMIObjTypes that are associated with this node
 - State machine instances that are associated by this node

SConnect CIM300 CIMPortal F

E125 - Equipment Services

- GetLatestRevision
 - Retrieves the last data and time at which the equipment metadata was revised
- NotifyOnRevisions
 - Request that the equipment notify the client when changes to the metadata are made

E125 - Client Services

- MetadataRevised
 - Notifies the client that the equipment metadata has been changed

What does E164 specify? Structure and content of equipment metadata

- E120/E125 Common Equipment Model usage/content
 - Nodes and parameters must have meaningful descriptions
 - Equipment element attributes for all E120 nodes must have meaningful values
 - All definitions (exceptions, SMs, parameter types, units, SEMI object types) must be referenced
 - Strict event name enforcement

State Machines

- Strict State Machine definitions
- Requires E157 State Machines for all process modules
- Requires E90 State Machines for all substrate locations
- Requires all Parameters, Events and Exceptions defined in Freeze II standards to be present
- State and transition names must match GEM300 standards

Why is E164* so important? Common metadata results in...

- Consistent implementations of GEM300
- Commonality across equipment types
- Automation of many data collection processes
- Less work to interpret collected data
- Enables true "plug and play" applications
- Major increases in engineering efficiency

E164 is to EDA what GEM was to SECS-II

Exception instances ProcessingChamber1 LogicalFlements Processing SubstLoc State Machine Instances E90SLSM ModuleProcessCurrState Module Process Prev State ProcessJobIDList Recipe Parameters SubstrateID Exception definitions

"Samp404" Tool

- Sample tool
 - 2 Load Ports
 - 1 Wafer transfer robot
 - 1 Spin coater
 - 1 Hotplate

CEM Representation - Equipment

- Major modules are the hotplate and coater
- Major subsystems are the load ports and transfer arm

CEM - Hotplate

- Chamber hood, pins and associated actuators all modeled together as a Module
- Temperature controller and sensor modeled as a single IODevice
- Each valve and its controller modeled together as a single IODevice
- Hot chuck modeled as a MaterialLocation belonging to the hotplate Module

Data Collection

E134 Specification for Data Collection Management

E134 - Equipment Services

- DefinePlan
 - Submit a Data Collection Plan (DCP), which includes a set of trace requests, event requests and/or exception requests
- GetDefinedPlanIds
 - Request a list of all Data Collection Plan IDs
- GetPlanDefinition
 - Retrieve the definition of a Data Collection Plan
- ActivatePlan
 - Activate the defined DCP
- GetActivePlanIds
 - Request a list of all activated DCP IDs

E134 - Equipment Services

- DeactivatePlan
 - Deactivate the DCP
- DeletePlan
 - Delete a DCP
- GetParameterValues
 - Ad-hoc request to retrieve the current values of one or more E125 parameters
- GetObjTypeInstanceIds
 - Request a current list of unique instance IDs for one or more E39 ObjTypes
- GetCurrentPerformanceStatus
 - Retrieve the current Equipment performance status

E134 - Client Services

- NewData
 - Data Collection Report from an active DCP. This includes trace, event and/or exception data
- PerformanceWarning
 - The Equipment detected performance degradation
- PerformanceRestored
 - The Equipment has detected a return to normal conditions
- DCPDeactivation
 - Notification that an active DCP for that consumer is deactivated
- DCPHibernation
 - Notification when one or more persisted DCP are put into the hibernation state as part of Equipment shutdown

Trace Request

- Polling frequency
- Set of non-transient parameters to collect
- Group size
- Optional triggers
 - Event or exception start trigger, to start data collection and reporting
 - Event or exception stop trigger, to stop data collection and reporting
 - In 0710, a trigger can have a Condition which checks a parameter value
 - Such as "stepNumber > 10"

Event Request

- Event ID & Source
- Event Data available
 - Associated transient parameters
 - Any non-transient parameters

Exception Request

- One or more exception criteria
 - ID
 - Severity
 - Equipment Node
- All matching exceptions are reported when SET or CLEAR
- Set of available parameters in the report is fixed in the equipment model

Data Buffering

- Optional buffering interval, in minutes
- If used, all data reports are cached, then sent all at once
- Dramatically improves XML over HTTP performance

CIMBUU CIMPORTAL PUBS

For More Information...

- Cimetrix <u>SEMI Standards</u> web page
- Cimetrix <u>EDA/Interface A</u> web page
- SEMI Standards (<u>www.semi.org</u>)
 - E120
 - E125
 - E132
 - E134
 - E164
- Request the <u>Cimetrix EDA/Interface A white</u> <u>paper</u>

