Industry News, Trends and Technology, and Standards Updates

President's Letter to Customers, Shareholders and Employees

Cimetrix-Bob Reback copy2019 was another exciting year for Cimetrix. In our journey as a Smart Manufacturing and Industrial IoT solutions provider, we were able to increase revenues year-over-year to a new record high during a year that saw double-digit revenue drops for capital equipment suppliers in the semiconductor industry. Also, our attention to fiscal discipline enabled us to achieve our tenth consecutive year of profitability and further strengthen our strong cash position.

Cimetrix continues to provide software that makes the world’s most sophisticated and expensive manufacturing equipment smarter, as well as an innovative IIoT platform for the world’s leading factories. We focus on ensuring the success of our worldwide customers with local presence and support. Our global team members in North America, Europe, Japan, Taiwan, Korea, China and Southeast Asia provide unmatched expertise and technical support to our customers.

For 2020, Cimetrix expects a double-digit increase in revenues as the results of our growth initiatives undertaken over the past several years gain further traction. We believe the foundation of Smart Manufacturing and Industrial IoT begins with smart equipment and smart connections. Furthermore, we believe that Cimetrix is uniquely positioned to help equipment manufacturers and factories in their pursuit of Smart Manufacturing. We will relentlessly pursue understanding our customers’ challenges and providing them with innovative solutions.

From all of us at Cimetrix, we thank our customers, partners and shareholders for the faith and confidence they have placed in us. We will continue to strive for excellence in satisfying our worldwide base of customers and delighting them with innovative new products and solutions.

Sincerely,

Bob Reback
President and Chief Executive Officer

Topics: Industry Standards, Customer Support, Partners, Doing Business with Cimetrix, Cimetrix Company Culture

Software Testing for Factory Automation

Posted by Jesse Lopez: Software Engineer on Feb 12, 2020 11:30:00 AM

software-testing-factory-automationWhen it is time to deploy equipment in a factory it is very apparent if proper software testing has been conducted. As Ron Michael said, “If you automate a mess, you get an automated mess.” This notion holds true for GEM-enabled equipment. Software tools are available that are designed to make automated testing painless and efficient. While it is important to test all software on the equipment, this blog focuses on testing the GEM interface.

Testing the GEM interface is crucial throughout the equipment’s Software Development Life Cycle as you will see below.

Development Phase

The stakeholder (customer) has communicated the need for the equipment to have a GEM interface so it can integrate with an in-house GEM host. The customer’s written specification includes the GEM scenarios the equipment must support to interact effectively with the host.

As the requested features are added to the GEM interface, the developer must be able to simulate the host’s role in each scenario. Testing is crucial to ensure the equipment correctly satisfies each requirement. After the GEM interface is completed, E30 compliance testing is paramount before deployment.

Deployment Phase

After the equipment is set up in its permanent location, the field engineer will need a way to connect to the equipment and test the GEM interface before the equipment is connected to the factory host.

Once the equipment is in production it can be difficult to gain access to the equipment because of its geographical location or factory access restrictions. So deploying equipment that has a tested and compliant GEM interface allows you to avoid a significant loss of time and resources and ensure a smooth deployment.

Sustaining and Maintenance Phase

The GEM interface should be tested after every software update, GEM feature addition, or any change that could affect how the interface performs.

In this sustaining and maintenance phase equipment that have been properly tested experience less downtime.

Using the Right Tools

Some of the biggest challenges that equipment manufacturers face stem from not having the correct GEM testing tools.

Perhaps they have a testing tool, but it is outdated and therefore, not effective. Having outdated tools in your testing portfolio is much like hanging on to a worn, rusty wrench. It may appear to be working, but it is gradually stripping the bolts. As Benjamin Franklin noted, “The best investment is in the tools of one’s own trade.” Therefore, as developers, it is important to know when it is time to “throw away the rusty wrench.”

Cimetrix EquipmentTestTM is a new software tool designed to reduce factory acceptance time and harden your factory GEM interface. It also helps factories and equipment suppliers characterize equipment, gather information from equipment, determine an equipment’s compliance to SEMI standards, and consolidate any equipment-specific unit tests into a single interface.

EquipmentTest is the multi-purpose tool that every equipment developer should have in their toolkit.

To understand why, let’s look at a few of its key features.

The Message Tab

The Message tab in EquipmentTest is crucial during development and testing. As parts of the GEM interface are completed, the ability to send atomic messages or to reply to messages from the equipment is vital. The messages are formatted in SMN (SEMI E173, SECS Message Notation). This XML syntax combined with a library of raw message templates makes it easy to quickly create and send SECS messages without writing any code. This is especially useful in situations such as sending a remote command to the equipment or ensuring a GEM alarm is reported to the host.

Users can also define custom messages and add these messages to their own libraries. These messages can then be saved into the EquipmentTest profile for that equipment to be used again later.

software-factory-automation-1

GEM Compliance Plug-in Report

EquipmentTest Pro provides an out-of-the-box GEM (SEMI E30) compliance testing capability called the GEM Compliance plug-in. This plug-in ensures that all GEM requirements implemented on the equipment are done so correctly. The GEM Compliance plug-in also provides a report that can be used to determine what areas of the GEM standard the equipment has implemented properly, and where improvement is needed. This report can help mitigate a common scenario I have witnessed where an inadvertent lack of congruence between stakeholders leads to missing or improperly implemented GEM items.

EquipmentTest is also configurable so that if a certain area of GEM functionality is not required by a factory, the report will define it as “not implemented.” EquipmentTest allows developers, testers, and all stakeholders to deploy their GEM interfaces with confidence.software-factory-automation-2

Test Execution

Tests can be run one at a time, or as a group. Each test contains embedded documentation that explains the test purpose and the steps that comprise the test. The Output tab shows the results of the test. The SMN log can be used when a test fails for diagnostics or to view the contents of messages that were sent and received by EquipmentTest.Software-factory-automation-3

Custom Tests

Every equipment is unique. Moreover, a particular equipment’s unique features are likely what differentiate it from the competitive alternatives and therefore contribute significantly to its value. For this reason, it is impossible to test every behavioral scenario of all manufacturing equipment. Inevitably, innovative equipment will require custom testing. Custom testing may also be required to ensure the equipment will meet the specific requirements of a given factory.

Support for custom testing is one of the most valuable features of EquipmentTest. Unlike its predecessors that use a limiting scripting language, EquipmentTest allows users to create custom tests called plug ins in standard .NET programming languages. The ability to write host-side tests in an extensible programming language, with access to the EquipmentTest’s SECS/GEM software libraries offers limitless testing possibilities. This makes sending and receiving SECS messages in a custom test very simple (as shown below).Software-factory-automation-4Once a developer creates a test, the project Dynamically Linked Library (.dll) file can be distributed to others involved in the testing project. This allows engineers, technicians, and other stakeholders to load the custom plug-in and test the equipment without writing any code.

Trace Report Test Example

This plug-in was created during training and showcases the basics of plug-in development. When we load our custom plug-in, the look and feel is the same as the Cimetrix-provided plug-ins.

Documentation

The documentation displayed in the UI is populated from the following method decorations.software-factory-automation-5software-factory-automation-6

Parameters

Parameters can be changed by the EquipmentTest user and can be of any type, even custom data types.

software-factory-automation-7software-factory-automation-8Test Logic

As the test runs, everything that is printed to the console in code shows up in the output window.software-factory-automation-9software-factory-automation-10Assertions

Assertions are what a test actually evaluate. In this example, we assert that all samples of the trace are sent by the equipment. If any assertion fails, the test will fail on the UI. In this case, “1 or more samples did not complete” would appear on the UI upon a test failure.

SMN Log

The SMN log contains all messages transmitted during the test. This can be very helpful for diagnosing the root cause of a test failure when used with the test output.

Conclusion

The Cimetrix EquipmentTest software is designed to make automated testing painless and efficient. Using this shiny new tool instead of a rusty one can make deploying a quality GEM interface much easier and helps ensure your new or existing GEM interface is fully E30 compliant.

For more information on Cimetrix EquipmentTest visit our website today.

Topics: Industry Standards

SEMICON Korea 2020 is Cancelled

Posted by Kimberly Daich; Director of Marketing on Jan 29, 2020 8:00:00 PM

semicon-korea-top

오늘 1월 31일 SEMI 협회는 코로나바이러스가 확산됨에 따라서, 2/5일부터 개최 예정이였던 SEMICON Korea 2020을 전면 취소할 수 밖에 없음을 알려 왔습니다. 궁금한 점이 있으시면 연락주시기를 바라며, 건강에 더욱 유념하시기를 부탁드립니다.

The SEMI Association has announced that, due to recent health concerns, they feel they have no choice but to cancel SEMICON Korea 2020. Please let us know if you have any questions, and feel free to reach out to us at any time.


Read now in Korean or below in English.

세미콘 코리아 202025일부터 7일까지 코엑스에서 개최될 예정입니다. 씨메트릭스는 한국 파트너사인 링크제니시스와 부스 #C818에서 여러분들을 맞을 준비를 하고 있습니다. “Design the Future”라는 주제로 반도체 제조, AI등 첨단 주제를 30여개의 프로그램이 진행될 예정이면, 저희 씨메트릭스와 링크제니시스는 다음과 같은 내용을 준비하였습니다.

  • 빅데이터/AI/머신러닝에서의EDA/Interface A의 역할 (고객사와의 공동 연구 제안 중)
  • 최근 한국과 중국에서 씨메트릭스가 주최한 EDA 세미나에서 많은 관심을 받은 Freeze III에 관한 안내 큰 주목을 받고 있는 이유는 데이터 처리 속도의 괄목한 만한 향상에 대한 기대감
  • EDA 개발시 혹은 검수시 오는 효율적이고 철저한 테스트의 어려움과 복잡함을 자동화를 통하여 해결
  • 많은 장비회사가 미래 성장을 위해서 준비하고 있는 소프트웨어의 고도화를 위한 로드맵 제시

부디 방문해 주시기를 바라며 미팅을 원하실 경우 아래의 버튼을 통하여 신청해 주시기 바랍니다.

Meet with Us


SEMICON Korea 2020 is almost here and Cimetrix is headed to the show! We will be co-exhibiting with our partner Linkgenesis at booth #C818. The show will be at COEX in Seoul on February 5-7. We look forward to the show and hope to see you there!

This year’s SEMICON Korea theme is: Design the Future and will feature more than 30 technology programs offering leading insights into semiconductor manufacturing, AI and more. Cimetrix recently held a seminar, in partnership with SEMI, around the topic EDA/Interface A, and this seems to be a major talking point both for SEMICON Korea, and around the world at this time.

If you want to find out more about EDA/Interface A, and how it can help with your Smart Factory goals, be sure to stop by our booth #C818. Some of the things you might learn are:

  • How EDA/Interface A leads the Big Data/AI/Machine Learning initiatives in the semiconductor world.
  • Hear recent news on the Freeze III that ensures a huge performance gain with existing EDA.
  • EDA acceptance testing can be difficult due to its complexity. Find out an easy way of testing the EDA interface .
  • Good equipment needs good software inside. Find out how to prepare competitive software with a good software roadmap.

We hope to see you at our booth, or you can request a meeting any time by clicking the button below.

Meet with Us

Topics: Doing Business with Cimetrix, Events, Smart Manufacturing/Industry 4.0

IPC Apex 2020 is here and Cimetrix will be there!

Posted by Kimberly Daich; Director of Marketing on Jan 28, 2020 1:15:00 PM

IPC Apex 2020

IPC APEX 2020 is almost here, and we are excited to be exhibiting for the fourth year in a row! This year, you can find us at booth #1521 and we hope to see you during the show!

IPC APEX is the largest event for electronics manufacturing in North America. You’ll find exhibitors and attendees from around the world come not only for the exhibition, but also to participate in standards development, a technical conference and professional development.

We are happy to announce that Ranjan Chatterjee, the Cimetrix VP & GM of the Smart Factory Business Unit will be speaking, along with Dan Gamota from Jabil, on Wednesday between 10:30 – 12 Noon.

One unified platform to run your entire factory

We will also be featuring demos of our Cimetrix Sapience® Integration Platform. Sapience is an extensible platform to seamlessly connect varying factory equipment within a single event-driven framework. Sapience provides rapid-deployment tools for factories to mine the treasure trove of data available from shop floor equipment driving actionable insights for optimal decision-making.
You can find out more about Sapience by visiting our website.
 
Cimetrix will once again be participating in the Passport to Prizes, so be sure to stop by our booth so you are eligible for some fun prizes!

The IPC APEX Show runs Tuesday, February 4 – Thursday, February 6 at the San Diego Convention Center, San Diego, CA, USA.

If you would like to learn more about how Cimetrix software products can help with your Smart Factory goals, please stop by our booth #1521 during the show. You can also request a meeting any time on the events page of our website by clicking the Schedule a Meeting button below. We look forward to seeing you in San Diego!

Schedule a Meeting

Topics: Doing Business with Cimetrix, Events, Smart Manufacturing/Industry 4.0

Cached Data: A New Feature in EDA Freeze 3

Posted by Brian Rubow: Director of Solutions Engineering on Jan 22, 2020 11:15:00 AM

Background

Several years ago, I was working with a client implementing EDA who wanted to collect data at higher than typical rates using the EDA trace data collection feature (essentially periodic data polling). The typical EDA data collection rate I was used to was 10 Hz, with a couple of clients implementing 20 Hz or even 40 Hz. This client, however, wanted to collect data at about 1000 Hz. This was a lot faster than we normally could accomplish, especially since the software timers and clock functionality in Windows are really designed for about 15 ms intervals. Therefore, the normal means of implementing the data collection was not going to work very well.

With a little creative thinking, I came up with a solution. Instead of using trace data collection, I decided to try event data collection. Every 1 second, I triggered an event notification and provided 1000 data samples with the event that had been collected at 1 ms intervals and stored. The 1000 samples were presented to the EDA client as an array of data, which EDA supports directly, and this solution worked very well. I also found that this approach used surprisingly few resources to implement and transmit, largely because the data is so compact. It was also very reliable.

Although this event with array data solution worked in this very specific situation, there were a few drawbacks. First of all, the client could not choose the data collection interval. Normally with trace data collection the client chooses the data collection rate to meet the needs of a specific data collection application. Secondly, the client receiving the data had to know what the data meant. The client application software had to be programmed to understand that each value in the 1000 sample array represented data collected every 1 ms. Finally, I could not use the trace start trigger and stop trigger to automatically enable and disable the reporting of the data collected. Normally, trace data collection can be started and stopped automatically to collect data between specific equipment events, which is a nice feature to focus data collection between specific processing steps or other meaningful activities.

EDA Freeze 3

A couple of years ago, the SEMI North America DDA (Diagnostics and Data Acquisition) task force, which I co-lead, decided to begin work on the next version of the EDA standards suite, commonly referred to as EDA Freeze 3. As part of this work, I raised an issue that I wanted our task force to address. That is, I wanted to be able to collect data using the EDA standard at higher frequencies than the typical 10 Hz available using today’s trace data collection. In particular, I wanted to leverage what I had learned using the event data array solution to report data collection at 1000 Hz and faster, and make this an integral part of the EDA standard without the limitations of my current solution. This new feature is now called Cached Data.

Cached Data Features

The basic principle behind this new feature is simple. First, allow the EDA client to define a Cached Data Request and specify the reporting frequency, data collection frequency, and other attributes like the number of samples, a start trigger, a stop trigger, and whether or not the triggers are cyclical. Then have the EDA server report the data for each parameter as a compact data array.

For example, an EDA client might ask for a parameter at a collection interval of 0.1 ms (10 KHz) and a reporting interval of 1 second. The result would be a set of Cached Data Reports that look like this:

EDA-Freeze-3-1-1

The equipment would collect the data every 0.1 ms and store the values for 1 second, and then send the Cached Data Report with the collected values in a tightly packed array. The EDA client would receive the data once per second and would know the data collection frequency.

Limitations

There are some limitations to the Cached Data proposal. For example, this type of data array reporting is only practical for some data types like integers, floats, Booleans and bytes. This type of data reporting is not practical for structured data or strings. Moreover, not all data can or should be collected at such high rates. Collecting data at these high rates requires robust software specifically designed for high-speed data collection. Therefore, the EDA proposal includes a way for parameter metadata to specify where the cached data feature can be used, and includes the specific minimum and maximum data collection frequencies. Therefore, the Cached Data feature is expected to be used for a limited subset of the available parameters for which the EDA server is specifically designed to provide such high-speed data collection.

gRPC & Protocol Buffers

The proposed EDA Freeze 3 standards also include the use of gRPC and Protocol Buffer technology, thereby moving EDA away from SOAP/XML over HTTP. gRPC with Protocol Buffers is a solution for a binary interface. Prelimiary test results reported to the DDA task force show dramatic throughput improvements and reduced bandwidth requirements for EDA. Additionally, the testing confirmed that reporting data in compact arrays is far more efficient for transmitting large amounts of data. In other words, the Cached Data feature is expected be even more effective due to this EDA protocol change.

SEMI Voting

Soon a new voting cycle for SEMI standards will begin where we vote on new versions of the standard. The Cached Data feature is included in two SEMI ballots: ballot 6553, a major revision of the SEMI E134 SPECIFICATION FOR DATA COLLECTION MANAGEMENT, and ballot 6527, a major revision of the SEMI E125 SPECIFICATION FOR EQUIPMENT SELF DESCRIPTION. Both are planned for voting in SEMI voting cycle 2 in 2020. Task force members are currently reviewing the latest revision of the proposed ballots.
Studies have already shown vast improvements in factory applications when collecting data at 10 Hz instead of 1 Hz. The increased performance of EDA Freeze 3 will allow the industry to dramatically improve manufacturing processes even more when data can be collected and reported at rates of 1000 Hz, 10 KHz, and beyond.

Topics: Industry Standards, Semiconductor Industry, EDA/Interface A, EDA Best Practices

GEM: Meeting Future Needs by Building on the Stability of the Past

Posted by David Francis: Director of Product Management on Jan 8, 2020 11:00:00 AM

Mechanic-working-on-a-diesel-filter-close-up-629x419-CopyAs a young boy, I liked to work on the family car with my dad. He taught me how to change the oil, check the spark plugs, replace the shock absorbers, adjust the timing and lots of other tasks that were common on older cars. I remember the first time he let me use the socket wrench. I thought it was the greatest tool ever invented. I could loosen bolts, then moving a small switch into a different position, the same wrench could now tighten bolts. It is a very versatile tool, one I still make sure to have handy to this day. 

I appreciate having well-designed tools available that can be used in a variety of situations. In my career, these tools have sometimes been software tools. I have spent a lot of my career working with equipment connectivity standards and seeing the benefits of having process equipment connected to a factory control system. Whether it is for full equipment control, or just to monitor and gather data from the equipment, having a robust connection to equipment is valuable.  

When I first started connecting equipment to factory control systems, the GEM standard had not been finalized. There was a lot of variability in the SECS message implementations available from the different equipment vendors. I was almost always able to get the equipment connected to the factory system, but generally each connection was custom to that equipment vendor and equipment type. This meant that each connection took far too much time to complete and made supporting different equipment very difficult. 

Once the GEM standards were finalized and adopted, there was now a versatile way to provide consistency and reusability across equipment types and across equipment vendors. Connecting to different types of equipment was principally a configuration task instead of a custom coding task.  

In addition, industry standard compliance test tools were developed to ensure compliance with the GEM standards and harden the implementations for reliable production use. This increased reliability helped drive the adoption and implementation of GEM in the global semiconductor front-end manufacturing industry. As a result, GEM has become a well-established reliable communication standard that is widely used and accepted.  

As other segments of the semiconductor and related electronics manufacturing markets have looked to connect equipment to their factory control systems, many have evaluated GEM and other communication standards to provide this functionality. In some cases, GEM was considered too old, too complex, or not a good fit. But, like the versatile socket wrench, many industry segments have seen the value of the stability and proven nature of GEM. They found that the socket wrench (GEM) was the right toolthey just needed a different sized socket (industry-specific guidance) to fit their needs. Let’s look at a few examples.  

SEMI PV2 

large solar farm in England producing electricityIn 2007, when the photovoltaic industry wanted to increase manufacturing efficiencies and reduce costs, they looked to implement industry-wide standards. They formed the Photovoltaic Equipment Interface Specification Task Force to define the interface between the factory control system and the equipment. 

The task force created two working sub-teams to evaluate existing solutions and the requirements of the industry. Several existing solutions such as SECS/GEM, EDA, OPC-UA, and XML were evaluated based on functionality, reliability, extendibility, and the ability to be integrated into different environments. The conclusion of both teams was to build on the SEMI GEM (E30) standard.  

The socket wrench (GEM) was the right tool, and a new socket (SEMI PV2) provided the required fit for their equipment and industry. 

HB-LED 

In 2010, when the high-brightness light-emitting diode (HB-LED) industry started their search for connectivity standards. They needed something that would allow low-cost, common hardware and software interfaces, and other means to enable HB-LED factories to effectively utilize multiple equipment types from multiple vendors in a highly automated manufacturing environment. 

This search found that the best course was to leverage the functionality, reliability, and extendibility of GEM. The SEMI HB4: Specification of Communication Interfaces for High-Brightness LED Manufacturing Equipment (HB-LED ECI) defines the behavior of HB-LED equipment and is based on the SEMI E30 (GEM) standard.  

Again, the socket wrench (GEM) was the right tool. What they needed was a socket (HB4) that would meet the needs of their industry. 

PCBECI 

In February 2019, the Taiwan Printed Circuit Association (TPCA) initiated an activity seeking to boost network connectivity of PCB equipment and help PCB makers implement smart manufacturing practices in the industry.  

The result of this effort was the publication in August of 2019 of the SEMI A3: Specification for Printed Circuit Board Equipment Communication Interfaces (PCBECI). This is a robust and comprehensive shop-floor communication standard that specifies the detailed, bidirectional communications needed to improve productivity and reduce the costs to develop equipment interfaces for PCB manufacturing. The SEMI A3 (PCBECI) standard is based on the SEMI E30 (GEM) standard. 

Yet again, the socket wrench (GEM) was the right tool and all that was needed was a socket for their specific needs (PCBECI).  

It is understandable to think of GEM as an old and complex standard. It has been around for years and can be difficult to understand. However, it has continued to be reviewed and updated as manufacturing needs have changed. As different market segments have looked for equipment communication standards to meet their specific needs, several have found that the functionality, reliability, extendibility and the ability to be integrated into different environments provided by GEM was the right tool. All that was needed were some companion specifications related to GEM to provide a better fit for their requirements. 

Topics: Industry Standards, SECS/GEM, Smart Manufacturing/Industry 4.0

A Look Back at Our 2019 Year at Cimetrix!

Posted by Kimberly Daich; Director of Marketing on Jan 3, 2020 11:45:00 AM

2019-becoming-2020-580x290As hard as it is to believe, 2019 is over and 2020 has just begun! This is a great time to take a look back over the milestones and accomplishments of the Cimetrix team during 2019 and review some of the highlights! We are really proud of our team and we love to celebrate their hard work and accomplishments throughout the year.

Tradeshows and Events

Our team attended, presented and exhibited at more than 27 events this year. These events covered the U.S., Europe, China, Taiwan, Japan, Korea, Southeast Asia and more. We were able to participate in some new shows and events this year including exhibiting at SEMICON Southeast Asia (Kuala-Lampur), co-exhibiting at iTap in Singapore, and hosting two of our own seminars in Thailand. We also exhibited in our own booth for the first time at SEMICON Japan.

SEMICON Southeast Asia was particularly interesting. By working closely with SEMI, Cimetrix had a new booth in the SEMI Smart Manufacturing Pavilion and an impressive demonstration in the SEMI Smart Manufacturing Journey including a demonstration of our smart factory platform Cimetrix Sapience®. You can read more about these events, at the links below and you can re-visit our entire events section on our blog at any time.

SEMICON Southeast Asia pre-show
SEMICON Southeast Asia post-show
SEMICON Japan pre-show
Cimetrix Events


Industry Standards

Discussion about industry standards has heated up in 2019, and we have continued publishing articles of interest about the GEM (SECS/GEM) standard, EDA/Interface A and others on our blog. Whether it's the semiconductor front-end or back-end industries, the SMT or PCBA industries, standards are top-of-mind right now. You can read some of our most popular articles below. 

Why Implement a SECS/GEM Driver
Multiple GEM Connections on Manufacturing Equipment
EDA Best Practices Series


Cimetrix EquipmentTest™

Cimetrix launched our first product available via e-commerce. This multi-protocol tester allows you to quickly validate your equipment's ability to connect to a factory control system. This product is available in both basic and pro versions, and you can find out more at the links below.

Cimetrix EquipmentTest
Leveraging Cimetrix EquipmentTest to Develop a Reliable SMT-ELS Interface
Do You Need Help with GEM Testing


Cimetrix Book Club

One of our most popular sections on our blog during 2019 was our Cimetrix book club. Our first entry was in June and we began with a review of the book "Agile Testing: A Practical Guide for Testers and Agile Teams" by Lisa Crispin and Janet Gregory. You can read any of the book club reviews at the link below.

Cimetrix Book Club


Cimetrix Team Members

We have run a Meet Our Team series for over two years now, and this is consistently one of our most viewed blog series. Everyone loves getting to know the faces behind the company, and we likewise enjoy introducing our team to the world. You can see all of our Meet Our Team posts at the link below and be sure to stay tuned, because our team is growing, and we will continue to introduce them in this series!

Meet Our Team blog series

Take a chance to peruse our posts and remember, you can always stay up-to-date by subscribing to our blog! 

Subscribe Today

Topics: Industry Standards, Doing Business with Cimetrix, Cimetrix Company Culture, Smart Manufacturing/Industry 4.0

Cimetrix Korea presents the 5th Annual EDA/Interface A Seminar in Seoul - Registration is open now!

Posted by Hwal Song on Dec 26, 2019 5:45:00 PM

Cimetrix Korea is happy to announce that the 5th EDA (Equipment Data Acquisition) Seminar will be held on January 15th, 2020. It will be co-hosted with Linkgenesis, the regional distributor of CIMPortal Plus, the EDA suite from Cimetrix.

As EDA has expanded its footprint as the preferred industry standard among leading IDMs in the world of big data, AI, Machine Learning, and Industry 4.0, equipment makers face the challenges of delivering the new requirements of EDA without fully understanding its fundamental objectives, technologies, and benefits.

This seminar is designed with highly practical sessions where speakers will share their personal experiences and insights as developers to help software engineers at the equipment suppliers understand the most efficient ways to implement robust EDA interrfaces.

For registration and questions, please email Ian Ryu (ian.ryu@cimetrix.com).

Topics include the following:

  1. Global and domestic EDA trends, including Freeze III, that will introduce major performance improvements.
  2. EDA spec review – A summary of key contents from the newest and most demanding EDA specifications that a developer must know.
  3. EDA modeling methodology and important lessons learning that Cimetrix engineers have gained while supporting many new EDA customers.
  4. Testing methodology used during development and needed for EDA acceptance to ensure that standards compliance and interface performance expectations are met.
  5. Other general topics
    a-Software roadmap for equipment makers
    b-Smart factory

We look forward to seeing you at the seminar!


씨메트릭스 코리아는 파트너사인 링크제니시스와 공동으로 제5회 EDA 세미나를 2020년 1월 15일에 개최하게 되었음을 기쁘게 생각합니다. 최근 몇년 간 EDA가 국내뿐 아니라 해외 반도체 제조사에서 빅데이터, AI, 인더스트리 4.0에 부응하기 위해 업계 표준으로 자리를 잡아감에 따라, 여러 장비회사들은, 복잡한 EDA 요구사항을 충분히 이해하지 못한 상황에서 관련된 요구사항을 개발해야하는 도전에 처해 있는 상황입니다.

한국에서 개최되는 금번 세미나는 실용적인 방법론을 최대한 강조한 세션들로 구성되어, 발표자들이 지난 수년 동안 쌓은 개발자로서의 경험과 통찰력을 최대한 공유함으로 참가한 개발자분들이 각자의 회사로 돌아가 EDA 인터페이스를 개발할 때, 최선의 개발 및 디자인 선택을 할 수 있도록 하였습니다.

참석하시는 분들에게 실전에 도움이 되는 유익한 시간이 되시리라 생각됩니다.

세미나 등록이나 기타 질문은 유종하 팀장 (ian.ryu@cimetrix.com)에게 연락 주시기 바랍니다.

세션은 아래와 같이 진행됩니다.

  1. EDA의 국내외 동향(FREEZE III 포함) EDA 관련 업계 현황과 큰 성능개선을 기대하는 Freeze III 소개
  2. EDA Spec Review : 개발자로서 알아야 할 새롭고 복잡한 EDA  스펙의 키포인트 정리
  3. EDA 모델링 개발 지원 경험 공유 – EDA를 신규 개발하는 여러 회사를 지원하며 축적된 경험 공유 및 방향성 제시
  4. 개발 및 납품 시 테스트 방법론 – 개발과 검수 효율성을 향상
  5. 일반 주제
    1. 장비회사에서 가져야 할 소프트웨어 로드맵
    2. 스마트팩토리 솔루션

감사합니다.

Topics: Industry Standards, Semiconductor Industry, EDA/Interface A, Doing Business with Cimetrix, Events

Why implement a SECS GEM driver?

Posted by Brian Rubow: Director of Solutions Engineering on Dec 12, 2019 2:15:00 PM

A SECS GEM driver can be looked at from a factory or equipment supplier perspective. I will discuss both of them in that order.

Factory Perspective

A little background:

semiconductor-factory-1

From a factory perspective, a SECS GEM driver is the host software that talks to an equipment’s GEM interface. It allows the factory to take advantage of the features implemented in each equipment’s GEM interface. However, what the factory can do with an equipment’s GEM interface is also limited by what the equipment supplier has included in that interface. The GEM standard is very flexible and scalable, which accounts for the widespread and growing adoption of GEM technology—it can be adapted to any manufacturing equipment and market segment.

It is possible to implement features in a GEM interface. But this also means that just having a GEM interface on the equipment does not ensure that it has been correctly designed to meet the factory’s expectations. An equipment supplier’s poor implementation of GEM can frustrate a factory’s plans for Smart Manufacturing by not providing features that the factory expects that could have been implemented. The tendency of most equipment suppliers is to implement the absolute minimum functionality in a GEM interface to save money. Therefore, it is the responsibility of the factory during equipment acceptance to evaluate the GEM interface to make sure that it is robust and has the full set of required features. The factory must have a clear vision of its needs both initially and later as its Smart Manufacturing goals are realized. It is not unusual for a factory to request an upgrade to an equipment’s GEM interface with more features, but these modifications usually come at a cost.

Although a factory’s SECS GEM driver must be adabtable to different suppliers’ GEM implementations, it only needs to support the specific features that the factory uses. For example, if the factory is only conc,erned about alarm and event report notification, then it does not need to support the messages for recipe management, remote control or trace data collection. As such, the investment in a SECS GEM driver is proportional to the number of GRM features that are utilized. However, the SECS GEM driver should also support variations in alarm and collection event implementations, because each equipment type will support a unique set of alarms and a unique set of collection events with unique data variable for event reports. Moreover, from equipment type to equipment type, the same collection ID might have different meanings. The SECS GEM driver therefore needs an ability to adapt by having a method to characterize the GEM implementation (such as a list of available collection events) and the ability to map a general capability to the actual implementation (such as “material arrived” = collection event ID 5).

So why would a factory want to use SECS GEM technology?

factory-alan-1In order to reach the goals of Industry 4.0 and Smart Manufacturing, factories must be able to monitor and control manufacturing equipment remotely. Therefore the equipment must have a software interface to provide this functionality and the factory must be able to access and use this interface.

Factories could let the equipment suppliers choose their own implementation technologies for this kind of capability, but as a result, different suppliers might take a different approach for every equipment type. This would be tremendously expensive and resource intensive. It is far better to standardize on one or two technologies, and ideally, one that is proven to work and known to have all of the necessary features. This allows the factory to achieve its goals with minimum investment, focusing instead on using the equipment interface in creative ways to improve manufacturing.

SECS GEM is the most proven technology already widely used across the globe and supported by the most sophisticated and automated industry in the world; semiconductor manufacturing. It is also widely adopted several other industries, making it a safe choice. The range of production applications supported by SECS GEM data collection include productivity monitoring, statistical and feedback/feedforward process control, recipe selection and execution tracking, fault detection and classification, predictive maintenance, reliability tracking, and many more. By contrast, alternatives to SECS GEM have so far been demonstrated to be incomplete or immature solutions. 

What specifically can you do with the SECS GEM technology?

  1. Collection Events: Be notified when things happen at the equipment, such as when processing or inspection begins and completes, or when a particular step in a recipe is reached.
  2. Collection Event Reports: Collect data with collection events. The host chooses what data it wants to receive. For example, track the ID of material arriving and departing from the equipment, or components placed on a board.
  3. Alarms: Be notified when bad or dangerous things are detected, receive a text description of the alarm condidtion, and when the issue is cleared.
  4. Trace Data Collection: Tell the equipment to report status information (software and/or hardware data) at a specific interval. For example, track digital and/or analog sensors during processing at 10 Hz frequency.
  5. Recipes:Upload, download, delete and select recipes as desired, whether in ASCII or binary formats. Make sure that the right recipe is run at the right time to eliminate misprocessing and minimize scrap. Track when someone changes a recipe.
  6. Remote Commands: Control the equipment, such as when to start, stop, pause, resume and abort. Custom commands, such as calibrate, skip or anything else can be supported.
  7. Equipment Constants: Configure and track the equipment configuration settings remotely.
  8. Terminal Services: Interact with the equipment operator remotely or provide instructions for the operator.
  9. Extensions: There are numerous extensions to GEM that can be supported but are not yet form requirements. For example, implement wafer or strip maps from E142 to provide and report details about material in XML format.

Equipment Supplier Perspective

AdobeStock_12291008-1

From an equipment supplier’s perspective, a SECS GEM driver is the software used to implement GEM technology on the equipment. In other words, the software to create a GEM interface. The equipment-side software requirements are inherently more complex that the host SECS GEM driver. This is because the equipment-side features are precisely defined by the GEM standard and should be implemented to the fullest extent possible. By contrast, the host can really do whatever it wants, so a limited implementation may be sufficient. In an ideal situation, the equipment supplier will implement just enough features in its GEM interface to satisfy all of its customers and therefore ship an identical GEM interface to all its customers. It is up to the equipment supplier to decide what GEM features to implement and how to adapt them for a particular type of equipment, but the factory should provide clear expectations about its planned use of the interface. It is also the factory’s responsibility to qualify the GEM interface during equipment acceptance. Note that it is not uncommon for factories to withhold partial equipment payment until the GEM interface has also passed its own acceptance.

Some equipment suppliers include the GEM driver as a standard feature on all equipment. This is ideal because it makes the GEM interface much easier to support and distribute. Some equipment suppliers only install GEM when it is specifically purchased. This often results in installation problems because the field technicians may or may not be knowledgeable enough or specifically trained to do this correctly. Other equipment suppliers include the GEM driver on all equipment, but only enable it when the feature has been purchased. This is better than attempting GEM interface installation after equipment delivery because the GEM interface can often be enabled with a simple equipment configuration setting.

Here are some key reasons for implement a SECS GEM driver:

1. “One ring to rule them all”

By implementing a GEM interface, an equipment supplier can avoid having to implement multiple interfaces. Because GEM is the most feature complete option, the it should be implemented first and Thoroughly integrated with the equipment control and user interface software. If other protocols must be supported, they can usually be mapped onto the GEM capabilities or a separate external system because they only include a subset of GEM functionality.

2. Equipment Supplier Application Software

If the GEM implementation includes support for multiple host connections, then the GEM interface can be used by the equipment supplier itself for many applications. For example, an equipment supplier can develop a software package that monitors and controls their specific equipment at a factory. This can run simultaneously and independently while the factory GEM host software is connected. Many factories are willing to buy applications from the equipment supplier that enhance the productivity of the equipment they have purchased. As an example, equipment suppliers are better equipped to develop predictive maintenance applications that determine when parts are approaching failure and need replacement. These applications can save the factory time and money by avoiding unscheduled downtime. Other applications can also be developed by equipment suppliers to analyze and optimize equipment execution.

3. Competitive Advantage

A well implemented GEM interface can differentiate a supplier’s equipment from that of its competitors. Factories are beginning to recognize the value in controlling and monitoring equipment remotely, and know that a poor GEM interface contributes nothing to a factory’s Smart Manufacturing initiatives. A GEM interface that goes the extra mile to be truly useful empowers the factory to excel at Smart Manufacturing and to be far more productive. Selling equipment in today’s market without a GEM interface is like selling a television without a remote. On the other hand, providing a fully featured GEM interface is like selling a smart television.

Final Words

Experts on GEM technology are available all over world. Because GEM is a mature industry standard and well defined, it can be implemented by anyone in a range of different programming languages and operating systems. however, to save time I recommend using a commercially available product rather than developing the complete GEM interface from scratch. This can save massive amounts of time and effort, and ensures ithe quality of the resulting implementation.

To speak with a Cimetrix GEM expert, or to find out more about our GEM software products, you can schedule a meeting by clicking the link below.

Ask an Expert

Topics: Industry Standards, SECS/GEM, Semiconductor Industry, Smart Manufacturing/Industry 4.0

Cimetrix is headed to Tokyo for SEMICON Japan 2019 – our last show of the year!

Posted by Kimberly Daich; Director of Marketing on Dec 4, 2019 5:00:00 PM

SEMICON Japan 2019 is coming soon and we will be there! You can read about it now in Japanese or below in English.

2019NewHero_bnr-1Cimetrixは本年最後の業界エキジビションである、セミコンジャパン2019に出展致します。

今回Cimetrixとして初めての単独ブースを、東京ビックサイトで開催されるセミコンジャパン2019出展します。期間は1211()~1213()です。
パートナーのブース(ローツェ株式会社様 #8419、および株式会社明電舎様#7714)、またはCimetrixブース(#2467)に是非お立ち寄りください。

日本は世界半導体製造産業界に生産設備の3分の1、材料の半分以上を供給しています。ITを利用した高度な生産効率の改善を実現するためのスマートマニュファクチャリングの推進にあたり、革新的なソリューションとテクノロジーをセミコンジャパンをはじめとする展示会で積極的に紹介しています。

弊社ブースでは今回GEM装置接続・制御ソフトウェアソリューション、EDA/Interface A組み込み開発ソリューション、及び最新製品であるGEM/GEM300スタンダードコンプライアンステスターのEquipmentTestをご紹介します。お客様はEquipmentTestを使用することで、工場側通信システムに接続するための装置通信機能を迅速に検証できます。
本ツールはベーシックバージョンとプロフェッショナルバージョンが準備されており、GEM、PCBECI、及びSEMI SMT-ELSの完全な標準コンプライアンステストを使用可能です。

最新製品としてもうひとつ、Sapienceを展示します。
Sapienceはスマートマニュファクチャリングを実現するための、装置データハンドリングプラットフォームです。イベント駆動型フレームワークを採用しており、さまざまな装置設備と工場をシームレスに接続可能です。
工場のITシステムが設備に直接アクセス可能とすることで工場主体の装置通信、データ収集、プロセス制御を実現し、インダストリー4.0、ビッグデータ、スマートマニュファクチャリングの基盤を確立します。

また弊社は12月11日(水)午後3時10分から会議棟608号室、TechSTAGE SMART Manufacturingフォーラムにて講演を行います。今年のテーマは「組み立てラインにおけるスマート化」です。この講演では、弊社のシステム構築のエキスパートコンサルタントであるアラン・ウェーバーが、「半導体スマートマニュファクチャリング:後工程ファクトリーのスマートマニュファクチャリング実現の要件、スタンダード、ソリューション」というタイトルのプレゼンテーションを行います。

展示会期間中に、是非、弊社ブース#2467にお立ち寄りください。
生産設備のスマート化、スマートファクトリーソフトウェアの専門家がお待ちしています。
下のボタンをクリックして事前にミーティング予約することも可能です。
お客様のご来訪をお待ち申し上げております。Meet with Us


2019NewHero_bnr-1Cimetrix is headed to Tokyo for SEMICON Japan 2019 – our last show of the year!

We are travelling to Tokyo, Japan next week to exhibit in our own booth at SEMICON Japan for the first time! This year’s show is once again located at Tokyo Big Sight from Wednesday, December 11 – Friday, December 13. Whether it’s at our partner booth (Rorze Corporation #8419 and Meiden #7714) or at the Cimetrix booth (#2467), we hope to see you there!

Japan supplies one third of the equipment and more than half of all materials to the global semiconductor manufacturing industry. As the world gets smarter, innovative solutions and technologies continue to be introduced at big shows like this.

Cimetrix will be showing all of our GEM equipment connectivity and control software solutions, as well as our EDA/Interface A products. We will also be introducing Japan to some of our newest products: Cimetrix EquipmentTest. This flexible software tool allows you to quickly validate an equipment’s ability to connect to a factory control system. It can be purchased in both the Basic and Pro versions, and supports full standards compliance tests for GEM, PCBECI and SEMI SMT-ELS out of the box.

Cimetrix Sapience will also be on display at our booth. Sapience is the Smart Factory Platform that seamlessly connects varying factory equipment within a single event-driven framework. The Sapience platform allows factory IT systems direct access to factory equipment, and the resulting equipment communication, data collection and process control establishes the foundation for Industry 4.0, Big Data and Smart Factory initiatives.

We are also privileged to have been invited to speak at the Smart Manufacturing Forum on Wednesday (Dec 11) afternoon at 3:10 pm on the TechSTAGE in Room 608 of the conference Tower. This year’s theme is “Realizing the SMART Assembly Line.” In this context, Alan Weber will deliver a presentation entitled “Semiconductor Smart Manufacturing: Requirements, Standards, and Solutions for the Back End.”

We encourage you to stop by booth #2467 and speak with an expert for your Smart Equipment and Smart Factory software needs! You can also book a meeting with us in advance by clicking the button below. We hope to see you soon.Meet with Us

 

Topics: Semiconductor Industry, Doing Business with Cimetrix, Events, Smart Manufacturing/Industry 4.0