Industry News, Trends and Technology, and Standards Updates

Resources Round-up: Presentations

Posted by Kimberly Daich; Director of Marketing on Oct 3, 2019 11:16:00 AM

Resource Center-1The Cimetrix Resource Center is a great way to familiarize yourself with standards within the industry as well as find out about new and exciting technologies. 

Our resource center features information about equipment connectivity and control, data gathering, GEM (SECS/GEM)EDA/Interface A, and more. These standards are among the key enabling technologies for the Smart Manufacturing and Industry 4.0 global initiatives that are having a major impact on the electronics assembly, semiconductor, SMT and other industries. Manufacturers and their equipment suppliers must be able to connect equipment and other data sources, gather and analyze data in real time, and optimize production through a wide variety of applications.

The many presentations featured in our resource center provide in-depth coverage from Cimetrix expert's presentations at many different conferences and expos around the world. Some of our most popular presentations are below.

Be sure to stop by our Resource Center any time or download the presentations directly from the links in this posting.

Resources

Topics: Industry Standards, SECS/GEM, EDA/Interface A, Doing Business with Cimetrix, Programming Tools, Photovoltaic/PV Standards, Smart Manufacturing/Industry 4.0

Resources Round-up: Videos

Posted by Kimberly Daich; Director of Marketing on Aug 3, 2019 1:28:00 PM

Resource Center-1The Cimetrix Resource Center is a great way to familiarize yourself with standards within the industry as well as find out about new and exciting technologies.

Our resource center features information about equipment connectivity and control, data gathering, GEM (SECS/GEM)EDA/Interface A, and more. These standards are among the key enabling technologies for the Smart Manufacturing and Industry 4.0 global initiatives that are having a major impact on the electronics assembly, semiconductor, SMT and other industries. Manufacturers and their equipment suppliers must be able to connect equipment and other data sources, gather and analyze data in real time, and optimize production through a wide variety of applications. The videos and video series featured in our resource center provide in-depth coverage of some of these concepts.  Some of our featured videos are below.

Be sure to stop by our Resource Center any time or watch the videos directly from the links in this posting.

Resources

Topics: Industry Standards, SECS/GEM, EDA/Interface A, Doing Business with Cimetrix, Programming Tools, Photovoltaic/PV Standards, Smart Manufacturing/Industry 4.0

Standards Made Simple #1 – GEM (Generic Equipment Model)

Posted by Ranjan Chatterjee on Jul 10, 2019 10:54:00 AM

Ranjan-Chatterjee-2017-industriesIn this our first standard overview, we look at GEM. At its history, its application and its suitability for use in the smart factories of today and the future.

Overview

The GEM standard defines a software interface that runs on manufacturing equipment. Factories use the GEM interface to remotely monitor and control equipment. The GEM interface serves as a broker between the factory host software (host) and the manufacturing equipment’s software. Because the GEM standard is an open standard, anyone can develop GEM capable host or equipment software.

The GEM standard is published and maintained by the international standards organization SEMI based in Milpitas, CA, USA. SEMI uses the standard designation “E30” to identify the GEM standard with the publication month and year appended as four numbers to designate a specific version. For example, E30-0418 identifies the version of the GEM standard published in April of 2018.

The GEM/SECS-II standards are protocol independent. Today, there are two protocols defined by SEMI: SECS-I (E4) for serial communication and HSMS (E37) for network communication. SECS stands for ‘SEMI Equipment Communications Standard’ and HSMS stands for ‘High-Speed SECS Message Services’.

Not surprisingly, most systems today are using the HSMS. HSMS does not specify the Physical Layer. Any physical layer supported by TCP/IP can be used, but typically everyone uses an Ethernet network interface controller (NIC) with an RJ45 port. When using the SECS-I standard, the messages size is limited to 7,995,148 bytes (about 8MB).

The GEM standard is built on top of SEMI standard SECS-II (E5). The SECS-II standard defines a generic message layer to transmit any data structure and defines a set of standard messages each with a specific ID, purpose and format.

History and Adoption

GEM was developed by the semiconductor industry to allow fabricators to connect and manage multiple machines in billion dollar facilities all around the world.

GEM is the adopted technology by factories worldwide because it is mature and supports all the features required now and expected in the future. GEM allows the same technology and software to be used to integrate multiple equipment and process types, independent of supplier.

The GEM standard is used in numerous manufacturing industries across the world, including semiconductor front end, semiconductor back end, photovoltaic, electronics assembly, surface mount technology (SMT), high brightness LED, flat panel display (FPD), printed circuit board (PCB) and small parts assembly. The adaptability of the GEM standard allows it to be applied to just about any manufacturing industry.

All semiconductor manufacturing companies including Intel, IBM, TSMC, UMC, Samsung, Global Foundries, Qualcomm, Micron, etc., currently use the GEM standard on all manufacturing equipment and have for many years. This includes 300mm, 200mm and 150mm wafer production.

GEM was successful enough early on that SEMI developed and currently uses several additional factory automation standards based on GEM technology. These additional standards are referred to as the GEM 300 standards, named because of their widespread adoption by the factories dedicated to the manufacturing of 300mm wafers.

In 2008, the photovoltaic (solar cell) industry officially adopted GEM with SEMI standard PV2 (Guide for PV Equipment Communication Interfaces) which directly references and requires an implementation of the GEM standard. In 2013, high-brightness LED industry created a similar SEMI standard HB4 (Specification of Communication Interfaces for High Brightness LED Manufacturing Equipment). Recently, the printed circuit board association has followed in the same path with ballot 6263 (Specification for Printed Circuit Board Equipment Communication Interfaces). All three standards similarly define implementations of the SEMI standard that increase GEM’s plug-and-play and mandate only a subset of GEM functionality to facilitate GEM development on both the equipment and host-side.

Several additional SEMI standards have been created over the years to enhance GEM implementations and are applicable to any industry and equipment. E116, Specification for Equipment Performance Tracking, defines a method to measure equipment utilization as well as the major components within the equipment. E157, Specification for Module Process Tracking, allows an equipment to report the progress of recipe steps while processing. E172, Specification for SECS Equipment Data Dictionary, defines an XML schema for documenting the features implementing a GEM interface. E173, Specification for XML SECS-II Message Notation, defines an XML schema for logging and documenting messages.

Flexibility and Scalability

GEM requirements are divided into two groups; Fundamental Requirements and Additional Capabilities. Any equipment that implements GEM is expected to support all the Fundamental Requirements. Additional Capabilities are optional and therefore are only implemented when applicable. This makes the GEM standard inherently flexible so that both a simple device and a complex equipment can implement GEM.

GEM easily and inherently scales to the complexity of any system. A simple device need only implement the minimum functionality to serve its purpose. Whereas complex equipment can implement a fully featured GEM interface to allow the factory to fully monitor and control its complex functionality. GEM also allows multiple host applications to connect to an equipment.

The requirements in that the GEM standard only apply to the equipment and not the host. This means that equipment behavior is predictable, but the host can be creative and selective choosing to use whichever features from the equipment’s GEM interface to attain it goals.

Our Seven Point Checklist

Remember our simple seven-point checklist for connectivity from our original article:

  • Event Notification – real-time notification of activity & events
  • Alarm Notification – real-time notification of alarms & faults
  • Data Variable Collection – real-time data, parameters, variables & settings
  • Recipe Management – process program download, upload, change
  • Remote Control – start, stop, cycle stop, custom commands
  • Adjust Settings – change equipment settings & parameters
  • Operator Interface – send & receive messages to/from operator

Put simply GEM succeeds in each of these areas and you can find more detail by downloading our white paper or watching the videos on our website.

Conclusion

If you’re looking for a tried and tested standard that can be applied to any smart manufacturing ecosystem, no matter how large, it’s hard to beat GEM. The semiconductor industry is one of the most demanding and expensive industries in the world and they have done the work for everyone else at great cost and over many years. Industries like PCB fabrication are adopting this standard rather than developing their own for good reason, they need something that can be applied quickly, reliably, economically and at scale.

Forgive the pun but, we believe GEM is the gold standard for standards. We’ve been working with it successfully for decades in the semiconductors industry and more recently in PCB and SMT facilities. In some cases, we have deployed GEM at the request of OEM customers to drive greater control and traceability in their supply chain.

GEM White Paper

This blog was first posted on EMSNow.com.

Topics: Industry Standards, SECS/GEM, Smart Manufacturing/Industry 4.0

Resources Round-up: Ebooks

Posted by Kimberly Daich; Director of Marketing on Jun 19, 2019 11:23:00 AM

Resource Center-1The Cimetrix Resource Center is a great tool for anyone who wants to learn more about industry standards including Equipment Connectivity and Control, data gathering, GEM (SECS/GEM)EDA/Interface A, and more. These standards are among the key enabling technologies for the Smart Manufacturing and Industry 4.0 global initiatives that are having a major impact on many industries. Manufacturers and their equipment suppliers must be able to connect equipment and other data sources, gather and analyze data in real time, and optimize production through a wide variety of applications. The free eBooks listed below provide in-depth coverage of the some of these concepts.  They have been written by technical experts who have participated in and led the standards development processes for more than two decades.

Be sure to stop by our Resource Center any time or download the white papers directly from the links in this posting.

Resources

Topics: Industry Standards, SECS/GEM, EDA/Interface A, Doing Business with Cimetrix, Programming Tools, Photovoltaic/PV Standards, Smart Manufacturing/Industry 4.0

Do you need help with GEM Testing?

Posted by David Francis: Director of Product Management on May 22, 2019 11:21:00 AM

A few years ago, I went through the process of building a new house. It was exciting to work with the architect to design the house and imagine what the finished product was going to be like. The architect created a 40-page set of drawings detailing all the components that would go into the house, like the electrical, plumbing and flooring. I thought everything was covered. I was a little surprised when things didn’t go exactly as detailed in the drawings. There were exceptions! However, having the detailed drawings made it easier to identify where things went wrong and helped clarify what needed to be done to correct the problems.EquipmentTest-Software-Control

Communication standards like GEM are like a set of architectural drawings for how to connect equipment to factory control systems. They define what needs to be communicated, how the communication needs to take place and provide a great roadmap for getting there. But like building a new house, there are usually a few surprises along the way. A standard, consistent way of testing the interface that can be used by both the factory and equipment manufacturer, greatly reduces the unknown and simplifies the process.

The new Cimetrix EquipmentTest™ product is the fastest way to achieve GEM Compliance for factory acceptance testing of new equipment. Whether you are an equipment manufacturer or factory, making sure the equipment interface is GEM compliant is critical. Having an easy-to-use testing solution to determine if the equipment is GEM compliant is critical.

There are two versions of EquipmentTest depending on your needs. The EqupmentTest Basic version is ideal for both Smart factories and equipment manufacturers to quickly and easily test the basic capabilities of an equipment’s GEM interface. EquipmentTest Basic includes a simple testing scenario, called a plugin, to evaluate the equipment’s ability to connect to a GEM host and communicate events, data and alarms. This version also includes the ability to send/receive individual messages to/from the equipment for discovery or diagnostic purposes. With the messaging functionality, you can also create macros to send and receive groups of messages.

For more complex testing, there is the EquipmentTest Pro version. In addition to all the features of the EquipmentTest Basic version, EquipmentTest Pro includes a full, rigorous GEM compliance testing plug-in and an operational GEM compliance testing plugin. The Pro version includes development tools to allow you to create your own custom tests/plug-ins using .NET languages. The GEM compliance plugin generates a GEM compliance statement that shows the areas and level of compliance to the GEM standards. There are also other tools only available in the EquipmentTest Pro version that allow you easily test and interact with the GEM functionality on the equipment.

As with all our products, Cimetrix supports the industry connectivity standards so you never have to wonder if your equipment is keeping up with the rest of the industry.

You can purchase either version of EquipmentTest directly from our website and download the software immediately. You will need to provide a valid Mac ID and email address for licensing purposes. You will receive your license agreement no more than 48 hours after purchase. Be sure to learn more and get your EquipmentTest download today!

Buy EquipmentTest Today

Topics: Industry Standards, SECS/GEM, Smart Manufacturing/Industry 4.0, Cimetrix Products

Multiple GEM Connections on Manufacturing Equipment

Posted by Brian Rubow: Director of Solutions Engineering on Apr 10, 2019 12:47:00 PM

The GEM standard is often incorrectly perceived as a single-connection protocol for manufacturing equipment. A single connection means that only one software product can use the GEM interface at one time. Many manufacturing equipment that support the GEM standard only have the ability for one connection. However, this limitation is set only in ignorance, by tradition, and to satisfy the common manufacturing system architecture. 

The truth is that the GEM standard simply does not discuss additional connections--meaning that additional connections are neither required nor prohibited. Not only is it possible for an equipment to support multiple concurrent GEM interfaces, this is becoming more and more common. If each supported GEM connection is point to point and complies with the GEM standard, this is certainly allowed. However, each connection should be completely independent of other GEM connections and still comply with the GEM requirements. Implementing multiple connections raises several questions. 

What does it mean for each GEM connection to be independent?

It means that each GEM host operates completely independently, as if the other GEM host connections were not present. Here is a more specific list of attributes that define “completely independent”:

  • The Communication state model is independent. Each can establish and disconnect independently from the other host packages.
  • The Control state model is independent. Each can be set up as local or remote as needed. 
  • Collection event report dynamic configuration is completely independent. Each host defines a unique set of reports and subscribes to a unique set of collection events. Even so, if two GEM host connections create identical reports and link them to the same collection event, then both should receive identical data. 
  • Each host subscribes to a unique set of alarms. 
  • Each host can query status information independently of any another.
  • Each host can choose to enable or disable Spooling and configure it as desired.
  • Each host can set up its own trace data collection.
  • Each host only receives messages based on its subscriptions.
  • Each host only sees reply messages to its primary messages.

Are you talking about HSMS-GS? 

No. HSMS-GS means implementing SEMI Standard E37.2, High Speed Message Service – General Session, an inactive SEMI standard. This standard, which never gained much industry traction, opens a single port through which any number of clients can connect. In contrast, I am talking about supporting multiple implementations of E37.1, High Speed Message Service – Single Session (HSMS-SS) where each connection uses a unique port number. Nearly all GEM interfaces today use the HSMS-SS protocol. 

What are the advantages of having multiple GEM connections in a single GEM interface? 

This opens the door for many useful applications. Here are three example configurations, and of course, all of them could be accomplished at the same time. 

  1. A factory can set up multiple host software packages at the same time to connect to the same equipment’s GEM interface, without any knowledge of or interference with each other. With only a single connection, a factory wanting to do the same thing has to implement some sort of GEM host broker to funnel the different GEM host package communications into a single GEM connection… a technically challenging feat. 01_GEMHost_v3
  2. If an equipment supplier wants to create an application designed specifically for its equipment running in a factory, they can use one of the GEM connections. They don’t have to replicate functionality into a custom interface. 02_GEMHost_v3
  3. If one equipment needs to monitor, control, or pass data directly to or from another equipment, this can be done using one of the GEM connections without interference to the factory GEM connection. This is relatively simple to set up. Sometimes this is called horizontal communication. Such communication can also be channeled through a host using the traditional vertical communication use case for a GEM interface. 03_GEMHost_v3

What about safety?

Typically, I would expect factories to set up one and only one connection in the GEM interface to be in the online-remote state and allowed to send remote commands. But this is not an absolute requirement. It is not difficult to imagine applications where execution of remote commands is distributed among multiple applications. For example, an equipment supplier might use one GEM connection to manage periodic recalibration of the equipment based the actual measured performance. 

What are the technical complications? 

There are a few. 

  • Because each connection uses a separate port number, the GEM interface can only support a finite number of connections when using HSMS-SS. 
  • Because multiple connections are not addressed explicitly in the standard, there are not requirements for handling them. For example, GEM requires that operator commands and operator recipe management activity be reported to the host. However, when another connection sends a remote command or downloads a new recipe, there is no requirement to report this. Our CIMConnect product does, but there are no formal requirements to do so. 
  • GEM requires the communication status to be displayed in the GUI, but what about multiple connections? It is not clear what needs to be displayed for multiple hosts. Typically I’ve just displayed the first GEM connection status, but it might be useful to show each connection status and give the operator a chance to control all GEM connections. 
  • Some collection events (and hence data variables), status variables and equipment constants are targeting the behavior of that single connection. This means that in order to implement multiple connections correctly, these connection-specific features must be unique for that connection. For example, consider status variables EventsEnabled and ControlState. The values reported for these two status variables are unique to that connection. This adds some complexity to implementing the GEM interface with multiple connections. Of course, our CIMConnect product implements and handles this already. 

Does each GEM connection have to be identical? 

No, but generally speaking it should be the same. The same set of collection events/data variables, alarms, status variables, and equipment constants should be reported to all connections. However, there are use cases where it might be useful to have some unique collection events and data on one connection. For example, if an equipment supplier uses one GEM connection as a pipeline for a factory host package dedicated to their equipment, they might want to publish some unique data that is for its eyes only. As mentioned above, if two GEM host connection create an identical report, and link it to the same collection event, then both should receive identical data. On the other hand, trace data reports with the same status variables may not need to report identical data, because the values might be sampled independently and at different time intervals. 

How many GEM connections should an equipment support in its GEM interface?

I recommend supporting five connections. Most GEM implementations are just using one connection today, so this opens the door for up to four more connections. This enables an equipment to handle most situations without the need to be reconfigured later at the factory. In CIMConnect, the overhead for having five connections is quite minimal, and virtually nothing if they are not used. 

What should the communication settings be? 

You should definitely set up the equipment as passive. This puts all of the configuration on the host side. The device ID can be the same for all connections, where 0, 1, or 32767 is best. 

How do I turn on multiple GEM connections in CIMConnect?

Since our CIMConnect product inherently supports multiple GEM connections, Cimetrix customers really only have to configure the setup file. Our CIMConnect GEM product was originally designed with multiple GEM connections in mind; therefore it is native and intuitive, with virtually no extra programming required unless you count the additional work in the operator interface. In the setup file, just create the five [CONNECTIONX] sections initially, and then set up a connection-specific VARIABLES and EVENTS section for each of the five connections. 

Alternative Approaches?

One alternative approach is to look at the SEMI Equipment Data Acquisition (EDA) standards. An EDA interface is inherently only for data collection and has multiple client access built into the standard as a fundamental requirement. The semiconductor front end device manufacturers have successful embraced this technology in addition to the GEM standard. The GEM interface is used by the Manufacturing Execution System for command and control of the equipment, while the EDA interface is used for every other application. 

Final Thoughts

My recommendation is that everyone, especially Cimetrix CIMConnect customers, take a look at their GEM interface and make sure that you are doing a good job implementing multiple host connections. CIMConnect makes this extremely easy. And let your customers know that you have this feature so that they can take advantage of it. 

You can learn more about the GEM standard any time on our website.

GEM Standard

Topics: Industry Standards, SECS/GEM, Smart Manufacturing/Industry 4.0, Cimetrix Products

Resources Round-up: White Papers

Posted by Kimberly Daich; Director of Marketing on Mar 26, 2019 11:15:00 AM

Resource Center-1The Cimetrix Resource Center is a great tool for anyone who wants to learn more about industry standards including GEM (SECS/GEM), GEM300, EDA/Interface A, and more. These standards are among the key enabling technologies for the Smart Manufacturing and Industry 4.0 global initiatives that are having a major impact on many industries. Manufacturers and their equipment suppliers must be able to connect equipment and other data sources, gather and analyze data in real time, and optimize production through a wide variety of applications. The free white papers listed below provide in-depth coverage of the most broadly used equipment connectivity standards. They have been written by technical experts who have participated in and led the standards development process for more than two decades.

Be sure to stop by our Resource Center any time or download the white papers directly from the links in this posting.

Resources

Topics: Industry Standards, SECS/GEM, EDA/Interface A, Doing Business with Cimetrix, Programming Tools, Photovoltaic/PV Standards, Smart Manufacturing/Industry 4.0

Overview of the GEM Standard: Video Series Part Four of Five

Posted by Kimberly Daich; Director of Marketing on Feb 26, 2019 11:32:00 AM

The fourth part of our Overview of the GEM Standard Video series is here! New call-to-action

In this video, Brian Rubow gives a description and dives a little deeper on some of the most important GEM features including the following:

  • Self-Description
  • Alarms
  • Remote Control
  • Equipment Constants
  • Recipe Management
  • Material Movement
  • Terminal Services
  • Clock
  • Spooling

View the entire series today!

Topics: Industry Standards, SECS/GEM, SECS/GEM Features & Benefits Series

Overview of the GEM Standard: Video Series Part Three of Five

Posted by Kimberly Daich; Director of Marketing on Jan 3, 2019 11:22:00 AM

Join Brian Rubow for the third video in our five-part video series which covers another of the core features of GEM.

New call-to-action

One of the core features for monitoring equipment is the GEM Collection Event Notification. Every equipment will publish a set of collection events. These report in real-time when things are happening at the equipment level that a factory may want to monitor. The equipment will document a set of events that are aviable at the factory level, and the host can choose which ones they want to subscribe to.

View the entire series today!

Topics: Industry Standards, SECS/GEM, SECS/GEM Features & Benefits Series

A Look Back At Our Year As 2018 Comes To A Close

Posted by Kimberly Daich; Director of Marketing on Dec 19, 2018 11:47:00 AM

number-2018-wooden-cube-blockIt's getting close to the end of 2018 and we thought it was a good time to look back over our year and think about the many things Cimetrix has done. We are really proud of our team, which spans the globe, their hard work and accomplishments throughout the year. 

Tradeshows and Events

Our team attended, presented and exhibited at more than 25 events this year. These events covered the U.S., Europe, China, Taiwan, Japan, Korea, Southeast Asia and more. SEMICON West was a flagship event for us, as we took a large team to support two distinct booth areas. These included SEMI’s inaugural Smart Manufacturing Pavilion, where both Alan Weber and Ranjan Chatterjee spoke. You can review this event in the following three blog posts:

SEMICON West Pre-show
Alan Weber's Smart Manufacturing Pavilion speech
Brian Rubow's SEMICON West SEMI Standards meetings wrap-up


SECS/GEM Series

One of our longest series was also one of our most popular ever! It covers the major features and benefits of the GEM standard. Each post was written by one of our engineers who is an expert in the topic. You can review the entire series or select a particular topic you are most interested in learning more about.

SECS/GEM Series


International Offices

Cimetrix has been extremely active this year, and one of the most exciting areas was the opening and/or expansion of several offices in Asia. In February we announced the opening of Shanghai, China office. This blog post is one of several bi-lingual posts we published during 2018 and was one of our most viewed. Learn more about our efforts in China now!

Cimetrix International, Inc., China; 矽美科国际有限公司,中国


Cimetrix Team Members

We have run a Meet Our Team series for over a year, and this is consistently one of our most viewed blog series. Everyone loves getting to know the faces behind the company, and we likewise enjoy introducing our team to the world. You can see all of our Meet Our Team posts at the link below and be sure to stay tuned, because our team is growing, and we will continue to introduce them in this series!

Meet Our Team blog series


And finally, we can't have a year-end wrap-up without our most popular blog of the year...

Gigafab Minute

In October of this year, Alan Weber, our Cimetrix V.P. of New Product Innovations introduced the world to the Gigafab Minute infographic. This blog was picked up and re-posted by SEMI and passed around by some of the most influential leaders in the semiconductor industry. If you haven't seen it yet, we'd encourage you to take a few minutes to read it and leave us your comments!

The Gigafab Minute and SEMI Standards: A Modern Miracle

Take a chance to peruse our posts and remember, you can always stay up-to-date by subscribing to our blog! 

Subscribe Today

Topics: SECS/GEM, Doing Business with Cimetrix, Cimetrix Company Culture, Events, Smart Manufacturing/Industry 4.0