Industry News, Trends and Technology, and Standards Updates

Resources Round-up: Presentations

Posted by Kimberly Daich; Director of Marketing on Oct 3, 2019 11:16:00 AM

Resource Center-1The Cimetrix Resource Center is a great way to familiarize yourself with standards within the industry as well as find out about new and exciting technologies. 

Our resource center features information about equipment connectivity and control, data gathering, GEM (SECS/GEM)EDA/Interface A, and more. These standards are among the key enabling technologies for the Smart Manufacturing and Industry 4.0 global initiatives that are having a major impact on the electronics assembly, semiconductor, SMT and other industries. Manufacturers and their equipment suppliers must be able to connect equipment and other data sources, gather and analyze data in real time, and optimize production through a wide variety of applications.

The many presentations featured in our resource center provide in-depth coverage from Cimetrix expert's presentations at many different conferences and expos around the world. Some of our most popular presentations are below.

Be sure to stop by our Resource Center any time or download the presentations directly from the links in this posting.

Resources

Topics: Industry Standards, SECS/GEM, EDA/Interface A, Doing Business with Cimetrix, Programming Tools, Photovoltaic/PV Standards, Smart Manufacturing/Industry 4.0

EDA Best Practices Series: Choose to Provide E164-Compliant Models

Posted by Derek Lindsey: Product Manager on Aug 28, 2019 11:42:00 AM

In the EDA Best Practices blog series, we have discussed choosing a commercial software platform, using that package to differentiate your data collection capabilities and how to choose what types of data to publish. In this post we will review why you should choose to provide an E164-compliant equipment model.

What is E164?

Equipment Data Acquisition (EDA) - also referred to as Interface A - offers semiconductor manufacturers the ability to collect a significant amount of data that is crucial to the manufacturing process. This data is represented on the equipment as a model, which is communicated to EDA clients as metadata sets. The metadata, based upon the SEMI E125 Specification for Equipment Self-Description, includes the equipment components, events, and exceptions, along with all the available data parameters.

Since the advent of the SEMI EDA standards, developers and fabs have recognized that equipment models, and the resulting metadata sets, can vary greatly. It is possible to create vastly different models for similar pieces of equipment and have both models be compliant with the EDA standards. This makes it difficult for the factories to know where to find the data they are interested in from one type of equipment to another.

Recognizing this issue, the early adopters of the EDA standards launched an initiative in to make the transition to EDA easier and ensure consistency of equipment models and metadata from equipment to equipment. This effort resulted in the E164 EDA Common Metadata standard, approved in July 2012. Another part of this initiative was the development of the Metadata Conformance Analyzer (MCA), which is a utility that tests conformance to this standard. With this specification, equipment modeling is more clearly defined and provides more consistent models between equipment suppliers. This makes it easier for EDA/Interface A users to navigate models and find the data they need.

Power of E164

The E164 standard requires strict name enforcement for events called out in the GEM300 SEMI standards. It also requires that all state machines contain all of the transitions and in the right order as those called out in the GEM300 standards. This includes state machines in E90 for substrate locations and in E157 for process management. The states and transition names in these state machines must match the names specified in the GEM300 standards.

These requirements may seem unnecessarily strict, but implementing the common metadata standard results in:

  • Consistent implementations of GEM300
  • Commonality across equipment types
  • Automation of many data collection processes
  • Less work to interpret collected data
  • Ability for true “plug and play” applications
  • Major increases in application software engineering efficiency

Knowing that a model is E164 compliant allows EDA client applications to easily and programmatically define data collection plans knowing that the compliant models must provide all of the specified data with the specified names. For example, the following application is able to track carrier arrival and slotmap information as well as movement of material through a piece of equipment and process data for that equipment.eda-best-practice-e164-1

This application will work for any GEM300 equipment that is E164 compliant. The client application developer can confidently create data collection plans for these state machines, knowing that an E164-compliant model must provide the needed state machines and data with the proscribed names.

Decide to be E164 compliant

A number of leading semiconductor manufacturers around the globe have seen the power of requiring their equipment suppliers to provide EDA/E164 on their equipment, and now require it in their purchase specifications.

If you are a semiconductor manufacturer, you should seriously consider doing the same because it will greatly simplify data collection from the equipment (and most of your candidate suppliers probably have an implementation available or underway.

If you are an equipment supplier and your factory customers have not required that your EDA models be E164 compliant, you should still seriously consider providing this capability anyway as a way to differentiate your equipment. Moveover, E164-compliant models are fully compliant with all other EDA standards. Finally, it is much easier and more cost effective to create E164-compliant models from the outset than it is to create non-compliant models and then convert to E164 when the factory requires it.

Conclusion

The purpose of the E164 specification is to encourage companies developing EDA/Interface A connections to implement a more common representation of equipment metadata. By following the E164 standard, equipment suppliers and factories can establish greater consistency from equipment to equipment and from factory to factory. That consistency will make it easier and faster for equipment suppliers to provide a consistent EDA interface, and for factories to develop EDA client applications.

Contact Us

Topics: Industry Standards, EDA/Interface A, Doing Business with Cimetrix, Smart Manufacturing/Industry 4.0, Cimetrix Products, EDA Best Practices

Cimetrix Blog Series Round-up

Posted by Kimberly Daich; Director of Marketing on Aug 8, 2019 12:08:59 PM

For the last couple of years, we have published a number of beneficial series in this forum to help contribute to the understanding of many of the standards in the manufacturing industry. In case you missed some of them, we are going to re-cap and link to the most popular today.

GEM Features and Benefits

This series features 15 separate posts with videos and information on some of the most important aspects of the GEM (SECS/GEM) standard. This series is one of our most popular ever and was written by a number of the Cimetrix engineering team who have studied and practiced GEM for many years.

EDA Application and Benefits in Smart Manufacturing

With the adoption of the latest SEMI EDA (Equipment Data Acquisition, also known as Interface A) standards accelerating significantly over the past 2 years, we felt it was time to highlight the applications across the industry that make the best use of these standards, and the specific manufacturing benefits that result. 

Models in Smart Manufacturing

In this series, we highlighted the importance of explicit and standardized models in the context of equipment communications interfaces and some of the “smart” factory applications they support. 

EDA Testing

Since the EDA/Interface A adoption process has now clearly reached critical mass, we must seriously address the question “How are we going to test the equipment and systems that incorporate these standards?” This is an excellent question, and one that has a multi-part answer, which is addressed in this 6-part series.

These, and many others including a the Cimetrix Book Club and Meet-the-Team series are some of what you can find on our blog. Be sure to subscribe today!

Subscribe Today

Topics: Industry Standards, Doing Business with Cimetrix, SECS/GEM Features & Benefits Series, EDA in Smart Manufacturing Series, EDA Testing Series, Meet Our Team, Book Club

Resources Round-up: Videos

Posted by Kimberly Daich; Director of Marketing on Aug 3, 2019 1:28:00 PM

Resource Center-1The Cimetrix Resource Center is a great way to familiarize yourself with standards within the industry as well as find out about new and exciting technologies.

Our resource center features information about equipment connectivity and control, data gathering, GEM (SECS/GEM)EDA/Interface A, and more. These standards are among the key enabling technologies for the Smart Manufacturing and Industry 4.0 global initiatives that are having a major impact on the electronics assembly, semiconductor, SMT and other industries. Manufacturers and their equipment suppliers must be able to connect equipment and other data sources, gather and analyze data in real time, and optimize production through a wide variety of applications. The videos and video series featured in our resource center provide in-depth coverage of some of these concepts.  Some of our featured videos are below.

Be sure to stop by our Resource Center any time or watch the videos directly from the links in this posting.

Resources

Topics: Industry Standards, SECS/GEM, EDA/Interface A, Doing Business with Cimetrix, Programming Tools, Photovoltaic/PV Standards, Smart Manufacturing/Industry 4.0

EDA Best Practices Series: Specifying and Measuring Performance and Data Quality

Posted by Alan Weber: Vice President, New Product Innovations on Aug 1, 2019 12:14:00 PM

The old adage “You get what you pay for” doesn’t fully apply to equipment automation interfaces… more accurately, you get what you require, and then what you pay for!

This is especially true when considering the range of capability that may be provided with an equipment supplier’s implementation of the EDA (Equipment Data Acquisition, also known as Interface A) standards. Not only is it possible to be fully compliant with the standard while delivering an equipment metadata model that contains very little useful information, the standards themselves are also silent on the topics of Performance and Data Quality.  So you must take extra care to state these requirements and expectations in your purchase specifications if you expect the resulting interface to support the demands of your factory’s data analysis and control applications. Moreover, to the extent these requirements can be tested, you should describe the test methods and tools that you will use in the acceptance process to minimize the chance of ugly surprises when the equipment is delivered.

We have covered the importance of and process for creating robust purchase specifications in a previous posting. This post will focus specifically on aspects of Performance and Data Quality within that context.

Scope of Performance and Data Quality Requirements

From a scope standpoint, Performance and Data Quality requirements are found in a number of sections in an automation specification. The list below is just a starting point suitable for any advanced wafer fab – your needs may extend and exceed these significantly.

Here are some sample requirements that pertain to the computing platform for the EDA interface software:

  • The interface computer should have the capability of a 4-core Intel i5 or i7 or better, with processing speed of 2+ GHz, 8 GB of RAM, and 500 GB of persistent storage with at least 50% available at all times.
  • The equipment must monitor key performance parameters of the EDA computing platform such as CPU utilization (%), memory utilization (GB, %), disk utilization (GB, %) and access rate, etc. using system utilities such as Perfmon (for Windows systems) and store this history either in a log file or in some part of the equipment metadata model.
  • The network interface card must support 1 GB per second (or faster) communications.

In the area of equipment model content, the following requirements are directly related to interface performance and data quality:

  • The equipment should make the EDA computing platform performance parameters available as parameters of an E120 logical element that represents the EDA interface software itself.
  • The supplier must provide a written description of the update rates, recommended sampling intervals, normal operating ranges and behaviors, and high/low/rate-of-change limits for all key process parameters. These will be used to design data quality filters in the data path between the equipment and the consuming applications/users.
  • Equipment parameters provided through the EDA interface must exhibit a number of data quality characteristics, including, but not limited to: an internal sampling/update rate sufficient to represent the underlying signal accurately; timing of trace reports that is consistent with the sampling interval within +/- 1.0%; values in adjacent trace reports must contain then-current values at the specified sampling interval; and rejection of obvious outliers.

Advanced users of the EDA standards are now raising their expectations for the equipment to provide self-monitoring and diagnosis capability in the form of built-in data collection plans (DCPs), as expressed in some of the following requirements:

  • The supplier must provide built-in DCPs to support common equipment performance monitoring, diagnostic, and maintenance processes that are well known to the supplier. Documentation for these DCPs must define their purpose, activation conditions, interface bandwidth consumed, and the types of analysis the collected data enables.
  • The supplier must describe the operating conditions that can lead to a PerformanceWarning situation for the EDA interface.
  • The supplier must describe the algorithms used to deactivate DCPs under PerformanceWarning conditions. These might include LIFO (i.e., the last DCP activated is the first to be deactivated), decreasing order of bandwidth consumed or “size” (in terms of total # of parameters and # of trace/event requests), etc.

Because of the power and complexity of the DCP structure defined in the EDA standards, it is not sufficient to specify the raw communications performance requirement as a small number of isolated criteria, such as total bandwidth (in parameters per second) or minimum sampling interval. Rather, since the EDA interface must support a variety of data collection client demands for a wide range of production equipment, these requirements should be expressed as combinations of sampling interval, # parameters per DCP, # of simultaneously active DCPs, group size, buffering interval, response time for ad hoc “one-shot” DCPs, maximum latency of event generation after the related equipment condition occurred, consistency of timestamps in trace reports with the specified sampling interval, and perhaps others.

Moreover, some equipment types may have more stringent performance requirements than others, depending on the criticality of timely data for the consuming applications… so there may be process-specific performance requirements as well.

Measurement and Testing

Methods for measuring and testing the above requirements should also be described in the purchase specifications so the equipment suppliers can know they are being successfully addressed during the development process and can demonstrate compliance before and after shipping the equipment. Clarity at this phase saves time and expense later on.

Examples of such requirements include:

  • The supplier must test the EDA interface across the full range of performance criteria specified above and provide reports documenting the results.
  • An earlier requirement states that the EDA interface must be capable of reporting at least 2000 parameters at a sampling interval of 0.1 seconds (10Hz) with a group size of 1, for a total data collection capacity (bandwidth) of 20,000 parameters per second. In addition to this overall bandwidth capability, the supplier must demonstrate that this performance is possible over a range of specific data collection deployment strategies, meaning different #s and sizes of DCPs, different sampling intervals, group sizes, etc. without causing the EDA interface to reach one of its “Performance Warning” states or overstress its computing platform. To this end, all combinations of the following data collection configuration settings must be run for at least 15 seconds each; assuming the equipment has n processing modules:
    • Trace intervals (in seconds): 1, 0.5, 0.2, 0.1 (and 0.05 if possible)
    • # of parameters per DCP: 10, 50, 100, 250, 500, 1000 (and 2000 if possible)
    • # of DCPs: 1, 2, 3, … to n
    • Group size: 10, 5, 2, 1
  • The test client should be run on a separate computing platform with sufficient computing power to “stay ahead” of the EDA interface computer; in other words, the EDA interface should never have to wait on the client system.
  • Test reports should indicate the start and stop time of each iteration (i.e., one combination of the above settings), and verify that the timestamps of the data collection reports sent by the EDA interface are within +/- 1% of the value expected if the samples were collected exactly at the specified trace interval.
Performance parameters of the EDA interface platform should also be monitored during the tests and included in the report. These parameters should include memory usage, CPU processing load, and disk access rate (and perhaps others) for all processes that constitute the EDA interface software.

This approach is shown in tabular form for a 2-chamber tool (see below); since Group Size does not (or should not) impact the effective parameters per second rate, it is not shown in the table.edabest-measure-1
  • A summary report for all performance tests that show acceptable message generation and transmission timing across the full range of data collection test criteria must be available.
  • Detailed SOAP logs for specific performance tests must be available on request.

In Conclusion

Red_smart_factory-TW

We hope you now have some appreciation for the importance of solid requirements in this area, and can accurately assess how well your current purchase specifications express your actual needs. If you want to know more about a well-defined process for improving your specifications, or have any other questions regarding the status and outlook of the EDA standards, and how they can be implemented, please contact us.

Contact Us

Topics: Industry Standards, EDA/Interface A, Doing Business with Cimetrix, Smart Manufacturing/Industry 4.0, Cimetrix Products, EDA Best Practices

Standards Made Simple #1 – GEM (Generic Equipment Model)

Posted by Ranjan Chatterjee on Jul 10, 2019 10:54:00 AM

Ranjan-Chatterjee-2017-industriesIn this our first standard overview, we look at GEM. At its history, its application and its suitability for use in the smart factories of today and the future.

Overview

The GEM standard defines a software interface that runs on manufacturing equipment. Factories use the GEM interface to remotely monitor and control equipment. The GEM interface serves as a broker between the factory host software (host) and the manufacturing equipment’s software. Because the GEM standard is an open standard, anyone can develop GEM capable host or equipment software.

The GEM standard is published and maintained by the international standards organization SEMI based in Milpitas, CA, USA. SEMI uses the standard designation “E30” to identify the GEM standard with the publication month and year appended as four numbers to designate a specific version. For example, E30-0418 identifies the version of the GEM standard published in April of 2018.

The GEM/SECS-II standards are protocol independent. Today, there are two protocols defined by SEMI: SECS-I (E4) for serial communication and HSMS (E37) for network communication. SECS stands for ‘SEMI Equipment Communications Standard’ and HSMS stands for ‘High-Speed SECS Message Services’.

Not surprisingly, most systems today are using the HSMS. HSMS does not specify the Physical Layer. Any physical layer supported by TCP/IP can be used, but typically everyone uses an Ethernet network interface controller (NIC) with an RJ45 port. When using the SECS-I standard, the messages size is limited to 7,995,148 bytes (about 8MB).

The GEM standard is built on top of SEMI standard SECS-II (E5). The SECS-II standard defines a generic message layer to transmit any data structure and defines a set of standard messages each with a specific ID, purpose and format.

History and Adoption

GEM was developed by the semiconductor industry to allow fabricators to connect and manage multiple machines in billion dollar facilities all around the world.

GEM is the adopted technology by factories worldwide because it is mature and supports all the features required now and expected in the future. GEM allows the same technology and software to be used to integrate multiple equipment and process types, independent of supplier.

The GEM standard is used in numerous manufacturing industries across the world, including semiconductor front end, semiconductor back end, photovoltaic, electronics assembly, surface mount technology (SMT), high brightness LED, flat panel display (FPD), printed circuit board (PCB) and small parts assembly. The adaptability of the GEM standard allows it to be applied to just about any manufacturing industry.

All semiconductor manufacturing companies including Intel, IBM, TSMC, UMC, Samsung, Global Foundries, Qualcomm, Micron, etc., currently use the GEM standard on all manufacturing equipment and have for many years. This includes 300mm, 200mm and 150mm wafer production.

GEM was successful enough early on that SEMI developed and currently uses several additional factory automation standards based on GEM technology. These additional standards are referred to as the GEM 300 standards, named because of their widespread adoption by the factories dedicated to the manufacturing of 300mm wafers.

In 2008, the photovoltaic (solar cell) industry officially adopted GEM with SEMI standard PV2 (Guide for PV Equipment Communication Interfaces) which directly references and requires an implementation of the GEM standard. In 2013, high-brightness LED industry created a similar SEMI standard HB4 (Specification of Communication Interfaces for High Brightness LED Manufacturing Equipment). Recently, the printed circuit board association has followed in the same path with ballot 6263 (Specification for Printed Circuit Board Equipment Communication Interfaces). All three standards similarly define implementations of the SEMI standard that increase GEM’s plug-and-play and mandate only a subset of GEM functionality to facilitate GEM development on both the equipment and host-side.

Several additional SEMI standards have been created over the years to enhance GEM implementations and are applicable to any industry and equipment. E116, Specification for Equipment Performance Tracking, defines a method to measure equipment utilization as well as the major components within the equipment. E157, Specification for Module Process Tracking, allows an equipment to report the progress of recipe steps while processing. E172, Specification for SECS Equipment Data Dictionary, defines an XML schema for documenting the features implementing a GEM interface. E173, Specification for XML SECS-II Message Notation, defines an XML schema for logging and documenting messages.

Flexibility and Scalability

GEM requirements are divided into two groups; Fundamental Requirements and Additional Capabilities. Any equipment that implements GEM is expected to support all the Fundamental Requirements. Additional Capabilities are optional and therefore are only implemented when applicable. This makes the GEM standard inherently flexible so that both a simple device and a complex equipment can implement GEM.

GEM easily and inherently scales to the complexity of any system. A simple device need only implement the minimum functionality to serve its purpose. Whereas complex equipment can implement a fully featured GEM interface to allow the factory to fully monitor and control its complex functionality. GEM also allows multiple host applications to connect to an equipment.

The requirements in that the GEM standard only apply to the equipment and not the host. This means that equipment behavior is predictable, but the host can be creative and selective choosing to use whichever features from the equipment’s GEM interface to attain it goals.

Our Seven Point Checklist

Remember our simple seven-point checklist for connectivity from our original article:

  • Event Notification – real-time notification of activity & events
  • Alarm Notification – real-time notification of alarms & faults
  • Data Variable Collection – real-time data, parameters, variables & settings
  • Recipe Management – process program download, upload, change
  • Remote Control – start, stop, cycle stop, custom commands
  • Adjust Settings – change equipment settings & parameters
  • Operator Interface – send & receive messages to/from operator

Put simply GEM succeeds in each of these areas and you can find more detail by downloading our white paper or watching the videos on our website.

Conclusion

If you’re looking for a tried and tested standard that can be applied to any smart manufacturing ecosystem, no matter how large, it’s hard to beat GEM. The semiconductor industry is one of the most demanding and expensive industries in the world and they have done the work for everyone else at great cost and over many years. Industries like PCB fabrication are adopting this standard rather than developing their own for good reason, they need something that can be applied quickly, reliably, economically and at scale.

Forgive the pun but, we believe GEM is the gold standard for standards. We’ve been working with it successfully for decades in the semiconductors industry and more recently in PCB and SMT facilities. In some cases, we have deployed GEM at the request of OEM customers to drive greater control and traceability in their supply chain.

GEM White Paper

This blog was first posted on EMSNow.com.

Topics: Industry Standards, SECS/GEM, Smart Manufacturing/Industry 4.0

New SEMI Standards for Flow Manufacturing Automation Demonstrated at JISSO PROTEC!

Posted by Alan Weber: Vice President, New Product Innovations on Jun 26, 2019 10:59:00 AM

Jisso-ProtecCimetrix attended the recent JISSO PROTEC exhibition (June 5-7, 2019) at the Tokyo Big Sight International Exhibition Center to see the latest developments in SMT (Surface Mount Technology) manufacturing… and witnessed a truly compelling demonstration of the new SEMI Flow Manufacturing communications standards in action.

Jisso-1The new suite of standards is named SMT-ELS (Surface Mount Technology-Equipment Link Standards), and includes SEMI A1/1.1 as a lower-level messaging standard with SEMI A2 SMASH (Surface Mount Assembler Smart Hookup) defining the content of the messages required to configure an SMT manufacturing line and automate the material and information transfer among all equipment in that line. This is depicted in the figure below.

Jisso-2

The demonstration itself included placement equipment from 4 large equipment suppliers—Fuji, JUKI, Panasonic, and Yamaha—as well as load/unload stations and a bar code reader at the beginning of the line (see picture below). Each of these companies had implemented the “horizontal” (machine-to-machine) communications according to the SMT-ELS standards. The demonstration consisted of an operator scanning one of the stack of input boards with the barcode reader, placing it on the loader conveyor, and then watching as each piece of equipment automatically adjusted its internal conveyor to accept the board, run through its part placement recipe, and pass the board to the next equipment in the line, finally arriving at the unload station conveyor after a minute or so.

Jisso-3

Jisso-4

Before a fully automated multi-vendor production SMT line can be implemented, more work on the standards is necessary, especially in the area of error handling and recovery. In addition, the suppliers of other (non-placement) equipment types must adopt this approach. However, given the factory benefit of mixing equipment from multiple suppliers to optimize line performance for a specific set of products, this is only a matter of time.

If you want to know more about the status and outlook of these standards, and how they can be implemented in your equipment or factory, please contact us.

Contact Us

Topics: Industry Standards, Events, Global Services, Smart Manufacturing/Industry 4.0

Resources Round-up: Ebooks

Posted by Kimberly Daich; Director of Marketing on Jun 19, 2019 11:23:00 AM

Resource Center-1The Cimetrix Resource Center is a great tool for anyone who wants to learn more about industry standards including Equipment Connectivity and Control, data gathering, GEM (SECS/GEM)EDA/Interface A, and more. These standards are among the key enabling technologies for the Smart Manufacturing and Industry 4.0 global initiatives that are having a major impact on many industries. Manufacturers and their equipment suppliers must be able to connect equipment and other data sources, gather and analyze data in real time, and optimize production through a wide variety of applications. The free eBooks listed below provide in-depth coverage of the some of these concepts.  They have been written by technical experts who have participated in and led the standards development processes for more than two decades.

Be sure to stop by our Resource Center any time or download the white papers directly from the links in this posting.

Resources

Topics: Industry Standards, SECS/GEM, EDA/Interface A, Doing Business with Cimetrix, Programming Tools, Photovoltaic/PV Standards, Smart Manufacturing/Industry 4.0

Do you need help with GEM Testing?

Posted by David Francis: Director of Product Management on May 22, 2019 11:21:00 AM

A few years ago, I went through the process of building a new house. It was exciting to work with the architect to design the house and imagine what the finished product was going to be like. The architect created a 40-page set of drawings detailing all the components that would go into the house, like the electrical, plumbing and flooring. I thought everything was covered. I was a little surprised when things didn’t go exactly as detailed in the drawings. There were exceptions! However, having the detailed drawings made it easier to identify where things went wrong and helped clarify what needed to be done to correct the problems.EquipmentTest-Software-Control

Communication standards like GEM are like a set of architectural drawings for how to connect equipment to factory control systems. They define what needs to be communicated, how the communication needs to take place and provide a great roadmap for getting there. But like building a new house, there are usually a few surprises along the way. A standard, consistent way of testing the interface that can be used by both the factory and equipment manufacturer, greatly reduces the unknown and simplifies the process.

The new Cimetrix EquipmentTest™ product is the fastest way to achieve GEM Compliance for factory acceptance testing of new equipment. Whether you are an equipment manufacturer or factory, making sure the equipment interface is GEM compliant is critical. Having an easy-to-use testing solution to determine if the equipment is GEM compliant is critical.

There are two versions of EquipmentTest depending on your needs. The EqupmentTest Basic version is ideal for both Smart factories and equipment manufacturers to quickly and easily test the basic capabilities of an equipment’s GEM interface. EquipmentTest Basic includes a simple testing scenario, called a plugin, to evaluate the equipment’s ability to connect to a GEM host and communicate events, data and alarms. This version also includes the ability to send/receive individual messages to/from the equipment for discovery or diagnostic purposes. With the messaging functionality, you can also create macros to send and receive groups of messages.

For more complex testing, there is the EquipmentTest Pro version. In addition to all the features of the EquipmentTest Basic version, EquipmentTest Pro includes a full, rigorous GEM compliance testing plug-in and an operational GEM compliance testing plugin. The Pro version includes development tools to allow you to create your own custom tests/plug-ins using .NET languages. The GEM compliance plugin generates a GEM compliance statement that shows the areas and level of compliance to the GEM standards. There are also other tools only available in the EquipmentTest Pro version that allow you easily test and interact with the GEM functionality on the equipment.

As with all our products, Cimetrix supports the industry connectivity standards so you never have to wonder if your equipment is keeping up with the rest of the industry.

You can purchase either version of EquipmentTest directly from our website and download the software immediately. You will need to provide a valid Mac ID and email address for licensing purposes. You will receive your license agreement no more than 48 hours after purchase. Be sure to learn more and get your EquipmentTest download today!

Buy EquipmentTest Today

Topics: Industry Standards, SECS/GEM, Smart Manufacturing/Industry 4.0, Cimetrix Products

The 19th Annual European APC Conference is in the books!

Posted by Alan Weber: Vice President, New Product Innovations on Apr 23, 2019 10:34:00 AM

apcm20191Cimetrix participated in the recent European Advanced Process Control and Manufacturing (apc|m) Conference, along with over 150 control professionals across the European and global semiconductor manufacturing industry. This site of this year’s conference was Villach, Austria, a picturesque town nestled in the eastern Alps just north of the Italian border in the state of Carinthia. This region is home to a number of high-tech companies and institutions all along the semiconductor manufacturing value chain, and since it was the first time the conference was held in Villach, the local hosts rolled out the red carpet. apcm20192-2

This conference, now in its 19th year and organized by Silicon Saxony, is one of only a few global events dedicated to the domain of semiconductor process control and directly supporting technologies. As usual, the conference was very well organized, and featured a wide range of high-quality presentations, keynote addresses, and tutorial sessions. The supplier exhibits associated with this year’s event were especially numerous, as were the technical posters displayed in the exhibition area just outside the conference rooms.

As in many prior years, Cimetrix was privileged to present at this conference, as Alan Weber delivered a talk entitled “Addressing Connectivity Challenges of Disparate Data Sources in Smart Manufacturing.” The presentation highlighted the need for unifying data collection concepts—like explicit equipment models and generic structures for data collection plans—are increasing necessary for maintaining the fidelity of a factory’s “digital twin” in Smart Manufacturing settings where the number of data source types is growing. This presentation resonated with a number of the key conference themes, so if you want to know more, feel free to download a copy of the entire presentation from our web site.

apc20193-1Other highlights of the conference included:

  • An update by Otto Graf on the ambitious vision and progress of the BOSCH 300mm wafer fab now under construction in Dresden. In this talk he emphasized the role that digital technologies will play in bringing up the fab and climbing the yield ramp and other features of a wall-to-wall Industrie 4.0 implementation. apcm20194-1
  • “The Role of APC and Smart Manufacturing / Industrie 4.0 in New Reliability-Critical Markets“ by James Moyne (University of Michigan / Applied Materials) – James re-presented a number of the Smart Manufacturing technologies in the context of automotive industry requirements, especially the role that Subject Matter Expertise (i.e., people!) will play alongside other emerging technologies. He also pointed out that the Factory Integration chapter of the International Roadmap for Devices and Systems (IRDS) will be reorganized around the key tenets of Smart Manufacturing.

  • A thought-provoking invited talk from Dr. Roman Kern of the KNOW-CENTER titled “Possibilities and Challenges of Digitalization in the Semiconductor and Other Domains.” His key messages started with “Big Data is the new oil…. AI is the new electricity… and Data Science is the new lingua franca for leading global industries,” and then he went deeper into all of these.

  • Dr. Germar Schneider of Infineon Technologies built on the theme above in a practical setting with his “Chances and Challenges of Digitization in Semiconductor Fabs and Success Factors during the implementation” presentation. This was not only an in-depth look at some of the multi-year efforts at Infineon, but also included a summary of current digitization projects across the European manufacturing R&D community. 

  • apcm20195-1Another invited talk from BMW was delivered by Rainer Hohenhoff which covered “Product Data and Product Life Cycle Management in the face of new business models of the automotive industry.” In short, it discussed many of the ways a car company might make money even after people stop buying as many cars as they do today… and what collisions (pun intended) you could expect in the market as service companies like Google, Amazon, UBER, and others converge on the transportation consumer. 

There were poignant moments as well. After 19 years of personal dedication to this event, both Gitta Haupold of Silicon Saxony and Dr. Klaus Kabitzsch, Program Committee Chair from Technical University of Dresden are retiring. They will definitely be missed!

apcm20196-1The insights gained from these and the other 30+ presentations are too numerous to list here, but in aggregate, they provided an excellent reminder of how relevant semiconductor technology has become for our comfort, sustenance, safety, and overall quality of life. 

This conference and its sister conference in the US are excellent venues to understand what manufacturers do with all the data they collect, so if this topic piques your interest, be sure to put these events on your calendar in the future. In the meantime, if you have questions about any of the above, or want to know how equipment connectivity and control fit into the overall Smart Manufacturing landscape, please contact us!

Contact Us

Topics: Industry Standards, Semiconductor Industry, Doing Business with Cimetrix, Events, Smart Manufacturing/Industry 4.0