Industry News, Trends and Technology, and Standards Updates

Another Exciting Visit to SEMICON Taiwan

Posted by Kimberly Daich; Director of Marketing on Sep 27, 2016 10:30:00 AM

01_SEMICON_Taiwan_Exhibition_Center.jpg

Exhibiting at SEMICON Taiwan for the second time in as many years, Cimetrix significantly expanded its presence at the show with a booth in the Smart Manufacturing Pavilion. Like last year, we shared an exhibit with one of our Taiwan partner companies, Flagship International.

02_Booth_in_Smart_Manufacturing_Pavillion.jpg

Since the semiconductor industry is one of the most important economic engines in Taiwan, this year’s Gala Dinner at the Grand Hyatt featured an excellent and supportive speech by the country’s new President, Dr. Ing-Wen Tsai. Taiwan’s tech industries have had a solid year thus far, leading other regions of the world and capturing additional market share.

03_President_of_Taiwan_at_Dinner.jpg

In recent years, SEMI has increased its emphasis on focused “educational” forums at its SEMICON shows, and set a new high-water mark at SEMICON Taiwan with 20 of these events ranging from Design to Materials to Packaging to Overseas Investmen. Cimetrix was privileged to be named as one of the speakers at the Smart Manufacturing Forum, which included presentations by a variety of thought leaders from UMC, Rockwell Automation, ASE, and others. Alan Weber represented Cimetrix with a presentation entitled “Realizing Smart Manufacturing in Semiconductor Industry with SEMI Standards,” making the case that the industry’s factories already embody many of the characteristics of a Smart Manufacturing environment by virtue of the latest generations of SEMI Standards that support the required connectivity and control capabilities.

04_Alan_at_Smart_Manufacturing_Forum.jpg

As a specific example, the UMC “Big Data to Manufacturing Excellence” presentation by Mr. James Lin described the “Wait Time Waste” analysis application, which is directly enabled by the SEMI E168 (Product Time Measurement) standard and the underlying detailed equipment event data called for in the E164 (EDA Common Metadata) standard.

To support the level of ongoing activity at the show and elsewhere in Taiwan, the Cimetrix contingent also included Derek Lindsey and Kerry Iwamoto, shown here during one of quieter moments in the booth.

05_Derek_and_Kerry_in_Booth.jpg

Another highlight of the week for Cimetrix was participation in the eMDC (e-Manufacturing & Design Collaboration Symposium), now in its 10th year in Taiwan. Alan Weber made a presentation entitled “The Role of Models in Semiconductor Smart Manufacturing” that echoed a number of the messages shared at the Smart Manufacturing Forum but with heavier emphasis on the manufacturing applications that are enabled.

06_Weber_eMDC_Cover_Slide.jpg

The basic idea is that most of the information required to support generic process monitoring and calculation of productivity KPIs is now mandated by the latest generation of equipment model standards, and this promises to drastically reduce the factory cost of developing and integrating these applications.
 
On a final note, in discussing the use of the SEMI EDA standards for critical production applications with a number of the leading chip makers during the week, it seems that we are now very close to an industry tipping point for the adoption of this technology. This has been a long time in coming, and opens up a realm of exciting new possibilities for consumers of detailed equipment and process data!

 

Topics: Semiconductor Industry, Doing Business with Cimetrix, Events

News You Can Use in SEMI Command and Control Standards, Part 2

Posted by Brian Rubow and Alan Weber on May 31, 2016 1:00:00 PM

 172SEMI.pngIn a previous blog we mentioned that two new SEMI standards, E172 and E173, demonstrated that the GEM standard was alive and well and even gaining new momentum by evolving to adopt new technology. The earlier blog focused on E172 with its SEDD files that use an XML schema to describe what is in a GEM interface. Today’s blog is about the E173 Specification for XML SECS-II Message Notation: a new way to log and document GEM/SECS messages, again using an XML schema.

A few years ago Cimetrix was involved in a project prototyping Wait Time Waste concepts and implementation alternatives. This work required Cimetrix engineers to review and extract data from many different SECS-II message log files from a variety of sources, and in the process, exposed a serious weakness in the industry. Because there was no standardized notation for logging SECS-II messages, everyone represented them differently, using different nuances and variations in their notation based loosely on SML (SECS Message Language, which is mentioned in the GEM standard). Additionally, SML itself was designed primarily for human readability, and certainly not for consumption by software programs; moreover, you can’t analyze a long message log without software to do the parsing for you. As a consequence, writing software to review the log files and to extract meaningful data from the log files was far more difficult than it should have been – SML and SML-like notations are simply not suitable for today’s needs. But now there is a suitable, industry-standard alternative. 

At Cimetrix we have utilized various notations for logging SECS-II messages for many years. In order for any notation to be useful it must meet certain criteria. First of all, it has to be easy for software to write (serialize). Secondly, it also needs to be easy for software to read (deserialize). And finally, it should be easy for humans to read and understand.

The original technique we used many years ago was based on the scripting language Tcl (pronounced “tickle”), which uses curly braces as structural delimiters. When programming within the Tcl language, this works very well. In other programming languages, however, it is easy to serialize, but not so easy to deserialize. Another technique Cimetrix had used for a few years was based on XML, which is well supported by all modern programming languages and an integral part of most internet activity. It is very easy to serialize and deserialize. And when formatted with carriage returns and indentation, it is quite easy to read for most humans (at least the ones who are software programmers or web page gurus).

Here is a subjective comparison between the notation alternatives using a scale of 1 to 5 where 5 is excellent and 1 is very poor or difficult.

173_2.png

At Cimetrix we decided to leverage our experience with XML, SECS/GEM standards and the SEMI Standards organization and related communities to develop a notation that everyone in the industry could benefit from. The result was this new standard: SMN. It is comprised of two parts: an XML schema defined specifically for GEM/SECS messaging; and a specification document describing how to use it (although many details of the specification are embedded as annotations within the XML schema file itself). It looks like this:

173_1.png

The schema is found on the SEMI website: http://dom.semi.org/web/wstandards.nsf/complementaryfiles

SMN brings the representation of SECS messages into the Internet era by defining an open, standard, XML-based notation for these messages. So what can you do with this? Here are some ideas:

  • Document individual SECS/GEM messages (the SEMI E172 SEDD file uses SMN for this). You can also document entire message scenarios.

  • Log individual SECS/GEM messages or scenarios in XML format. These can include only the messages, or might also include protocol messages (like the HSMS separate message).

  • Share message logs with others. If their software supports SMN, they can immediately make use of it. This should increase collaboration in the manufacturing community, particularly between equipment suppliers and their customers.

  • Embellish log files with comments and meaningful metadata, like data item names, variable names, collection event names, etc.

  • Analyze and extract information from log files offline for projects like Wait Time Waste, where you don’t need to process a live data stream.

  • Log messages in a raw binary format to save disk space, yet encapsulated in XML for convenience.

  • Many of the numerous XML tools in the software development community can now be used by SECS/GEM software developers. This opens up a world of opportunities.

  • Products like our CIMConnect and CIM300 can make use of SMN to make it easier to implement GEM and GEM300 interfaces on the equipment by using the SECSData element from SMN to pass data from the equipment supplier’s software into our product.

It is exciting to see the GEM standard evolve and embrace new technologies like XML to make integrating manufacturing equipment into the factories easier and easier.

For more information about these latest standards, and how you can incorporate them into your interface implementation, please contact us.

Topics: Industry Highlights, SECS/GEM, Semiconductor Industry

News You Can Use in SEMI Command and Control Standards

Posted by Brian Rubow and Alan Weber on May 24, 2016 1:00:00 PM

172SEMI.png

As the SEMI GEM standard celebrates its 25th birthday, you may have thought its evolution had just about run its course — but you’d be wrong. Last year, the Information and Control Committee of SEMI Standards passed two new standards that enhance the usability of the entire SECS/GEM suite of standards for equipment suppliers and semiconductor manufacturers alike: E172 SEDD and E173 SMN.

Let us talk about the first of these, the E172 Specification for the SECS Equipment Data Dictionary (SEDD) and postpone E173 Specification for XML SECS-II Message Notation (SMN) discussion for another blog. SEDD standardizes the approach for documenting an equipment’s GEM interface in a way that is both human- and computer-readable. All factories in every industry that use GEM require their equipment suppliers to provide GEM interface documentation in some electronic form for each type of equipment. This is because the GEM interface on every equipment type is unique, supporting unique features and publishing a unique set of data. Of course, the GEM standard itself requires documentation and what has to be in the documentation but does not specify how this is to be accomplished. Until now there has been no common approach or format. This has always left the equipment suppliers to come up with their own format. At best this might be in a multiple-tabbed Excel spreadsheet or a PDF file; and at worst a text document that might or might not have been accurate or even complete. And every equipment supplier completes the documentation in a different structure and style so that no two GEM documents look the same. In summary, everyone is trying to complete this GEM and factory requirement by providing documentation, but in the end what factories are receiving has to be consumed and digested differently based on the equipment supplier, and sometimes even based on the specific equipment type from the same equipment supplier. It is a lot of work for the factory just to understand exactly what is in each GEM interface.

SEDD was created to solve this problem by defining a standard XML schema for documenting a GEM interface. Equipment suppliers create an XML file that complies with the SEDD XML schema to document the GEM interface and then deliver this XML file (called an SEDD file) to the factory.

Why XML? Because XML is the perfect technology for organizing data into a uniform structure that is well supported by modern programming languages. This means that equipment suppliers can use a software program to generate the SEDD file. It also means that factories can write software to read and view the SEDD file. Moreover, they can create intelligent host applications that automatically configure themselves and adapt to a specific GEM interface.

So what’s in an SEDD file? Below is a visual representation of the SEDD file schema, identifying the major elements of the SEDD file.

172Picture1.pngSo essentially the SEDD file includes a list of the data available for collection by a host, some general information about the equipment (in the header), and the format of the data variables, status variables and equipment constants. As an example of what details are included, here are the details for collection events.

As an example, for a collection event, the SEDD file includes a list of all collection events available, and the ID, name, description, related SEMI standard, and the list of related data variables and other variables for that collection event. This is everything you need to use a collection event.

172Picture2.png

So far this is a summary of what is available today in a SEDD file. Cimetrix is leading the GEM300 task to extend the SEDD file to include additional information. This work is in SEMI ballot 5872 that proposes to extend the SEDD file to also include:

  • A list of supported SECS-II messages and the acceptable format for each message (using E172 SMN)

  • A list of support remote commands and available parameters for each remote command

  • A list compliance tables for supported SEMI standards

  • The list of predefined event reports

This is all work that was postponed from the original SEDD standard development. Hopefully ballot 5872 will pass and make SEDD files even more useful. With this additional information an SEDD file would empower GEM host software to configure itself to fully communicate with a GEM interface and make all of the features in the GEM interface available.

This is one example of how GEM technology just keeps getting better. It is not surprising that GEM is getting used in more and more industries.

For more information about this latest standard, and how you can incorporate it into your interface implementation, please contact us.

Topics: Industry Highlights, SECS/GEM, Semiconductor Industry

Realizing Industry 4.0 with SEMI Standards: Right Here and Now

Posted by Alan Weber: Vice President, New Product Innovations on May 6, 2016 1:00:00 PM

IoT1.png

Since the concept was first articulated in 2011 by a German government-supported program promoting deeper integration of manufacturing software and hardware across the production value chain, the term “Industry 4.0” has gained recognition and momentum as the rallying cry for the 4th industrial revolution (see left Image by Christoph Roser at AllAboutLean.com). Wikipedia  summarizes it like this: “Industry 4.0 facilitates the vision and execution of a ‘Smart Factory.’ Within the modular structured Smart Factories of Industry 4.0, cyber-physical systems monitor physical processes, create a virtual copy of the physical world, and make decentralized decisions. Over the Internet of Things, cyber-physical systems communicate and cooperate with each other and with humans in real-time…” 

This definition may lead you to ask “What aspects of Industry 4.0 are truly revolutionary, and what technologies and tools are available today that would enable me to start building “Smart[er] Factories?” In this blog, I offer some potential answers to these questions that put the vision of Industry 4.0 within reach for automation practitioners familiar with the latest generation of SEMI Standards.  

IoT2.png

Semiconductor manufacturers have been collecting and using data from the equipment in their factories for decades. Throughout this period, device sizes and process windows have shrunk continuously according to Moore’s Law, and the SEMI Standards have evolved by necessity to support the insatiable demand for data exhibited by the process analysis and control applications that keep a modern fab running profitably (see left). The newest of these standards, the Equipment Data Acquisition suite (EDA, also known as “Interface A”), provides the power and flexibility to support a wide range of critical manufacturing applications and human users with ever-changing requirements; moreover, these standards can be deployed in a variety of system architectures without disturbing the “command and control” capabilities of existing factory systems.

“What does all this have to do with Industry 4.0?” To understand this, let’s look at the foundation of a “Smart Factory,” the collection of the many thousands of devices that might need to communicate over the so-called “Internet of Things.” 

We already see evidence that the availability of low-cost, low-power, networkable computing hardware will likely result in an explosion of “smart sensors” and other intelligent devices on the factory floor. However, as social scientists have observed over the millennia, groups of smart individuals don’t necessarily exhibit smart behavior in the aggregate, so what additional attributes must these devices possess to be good citizens of a collaborative, Industry 4.0 environment? How will these devices communicate effectively with one another? And what oversight will be required to ensure this communication achieves the ultimate manufacturing objectives?

As a starting point, I propose that each device, or manufacturing “thing,” at a minimum should be discoverable, autonomous, model-based, self-aware, communicative, and well-behaved. Depending on the role the device must play, it might also be self-monitoring, capable of defending itself (secure), and a consumer of data from other devices/systems as well as a provider. So defined, these devices would need a minimum of external monitoring and supervision (read “management overhead”) to perform their basic functions, but would rely on higher-level systems to provide specific objectives, instructions, and constraints (read “configuration, recipes, and limits”) for their operation in a given context and timeframe.

I realize that’s a lot to absorb at once, but now imagine that each of these devices could implement a subset of the services called for in the EDA standards, especially those defined in E120/E125/E164 (equipment modeling and standard metadata modeling), E132 (session management), and E134 (data collection management). Consider the collaboration among independent devices and systems this would enable…and ask yourself, how much closer to the vision of Industry 4.0 can you possibly get?

I hope the ideas above were useful…or at least thought-provoking. We’ll be developing this theme further in the coming months, but I wanted to use this blog as a conversation starter. We’d love to hear your feedback, so give us a call, or feel free to reach out to us.

Topics: Industry Highlights, Semiconductor Industry, EDA/Interface A, Smart Manufacturing/Industry 4.0

SEMICON China 2016 was the Largest Semiconductor Trade Show of the Last Five Years

SEMICON China SEMICON China

SEMICON China

SEMICON China

On March 15-17 in Shanghai, SEMI hosted its annual SEMICON China and PFD China, which was the world’s largest semiconductor trade show of the past five years. With an increase of 20% over last year, the show had more than 2,600 booths from companies based all over the world. Many theme pavilions at the exposition demonstrated the strength of the industry. In addition, the series of concurrent conferences and programs brought the global industry knowledge sharing to exhibitors and attendees alike.

Starting Tuesday morning, the Grand Opening Keynote was delivered by world-class industry leaders including Dr. Zhou Zixue—the Chairman of SMIC, Ding Wenwu—the President of China National IC Fund, along with the CEOs from TSMC, Applied Materials, Amkor Technology, TEL, STATS ChipPAC, and Lam Research. The presentation explored global business and technology trends, market opportunities, and shared the panel’s ideas supporting the development of China’s semiconductor industry.

The rapid rise of China’s semiconductor industry has been driven mainly by an increasing market and investments. Chinese companies and funds have been active in the recent cross-border merger and acquisition deals. On Wednesday at the “Tech Investment Forum – China 2016,” leaders of China’s IC Investment Fund and leading global investment institutions discussed investment hot-topics within the Chinese semiconductor industry.

Also on Wednesday, SEMICON hosted a “Build China IC Manufacturing Ecosystem” forum that discussed establishing a full integrated circuit (IC) manufacturing supply-chain and building manufacturing core competencies that are vital for China’s semiconductor industry. The forum included speakers from China and leading global companies from the IC design, manufacturing, equipment, and materials fields. A wide range of topics was  covered including innovation and cooperation in leading-edge frontend processes, advanced packaging technologies, eight-inch production line, and more.

Other concurrent technology sessions included “China Memory Strategic Forum,” “Technology Shape the Future – Senor Hub Solution for Wearable and IoT,” “LED China Conference 2016,” “Power Semiconductor Forum 2016,” “SEMI-JEDEC Mobile and IoT Technology Forum,” and “China Display Conference/ASID 2016.” These sessions illustrate how the Chinese semiconductor market is interested in exploring industrial developments, share its visions for the future, and to work cohesively to grow the industry within China.

This was the first year Cimetrix exhibited at SEMICON China. We were able to make some valuable connections, visit with existing customers, and establish that Chinese companies have a definite interest in our product lines as well as how we can help them find greater success. We featured our complete SECS/GEM and EDA product lines with in-booth demonstrations and presentations.

We have already made plans to attend next year’s show to further explore how we can fit into the expanding Chinese market. We are hopeful that China will open new possibilities for the continued growth of Cimetrix.

Topics: Semiconductor Industry, Doing Business with Cimetrix, Events

Equipment Data-Driven Continuous Improvement for 200mm Fabs

Posted by Alan Weber: Vice President, New Product Innovations on Feb 23, 2016 1:03:00 PM

Systema1.png

The focus of the most recent SYSTEMA Expert Day, held during a snowy week in Dresden in late January 2016 in conjunction with the 13th annual innovationsforum, was “200mm Fab Enhancement” and featured a number of presentations from Systema GmbH customers and partner companies.

By way of background, there are a number of reasons for the emphasis on 200mm fab enhancement, most notably that many of these factories are enjoying a renaissance of business to meet the growing demands for IoT (Internet of Things) devices. Moreover, since the drivers for this market segment include cost, variety, and volume, the automation and operations people in these factories are faced with a new combination of challenges not seen in earlier markets.

Cimetrix’ contribution to the event was a presentation titled “Equipment Data-Driven Continuous Improvement for 200mm Fabs,” which outlined a model-based, ROI-driven approach for adding equipment data collection capabilities to existing factories. Our basic premise is that such an approach helps meet some of the automation challenges in an incremental, cost-effective way without requiring major redesign of the factory or equipment control systems.

Systema2.png

Since the term “model” is used in many different contexts, we first clarified what this term means in the context of SEMI equipment communications standards, and how this evolved over the past three decades. This was accomplished using a natural language analogy, which is shown in the figure below. Note that the culmination of this process to date is the EDA (Equipment Data Acquisition) metadata model called for in the latest generation of standards, which is very prescriptive in terms of structure, content, and naming conventions for the elements of a semiconductor manufacturing equipment. And even thought the specifics of this model were designed with 300mm wafer fab equipment in mind, the principles well apply to all substrate sizes, and even to the types of material, processes, and equipment found in back end assembly and test factories.

After establishing the value of explicit models for representing equipment, sensors, and other key items in a manufacturing environment, we next introduced concept of an ROI-driven strategy for evaluating the relative benefit of various data collection projects. This strategy first identifies and ranks the key manufacturing objectives that must be addressed, then poses the questions that must be answered to meet those objectives. It then identifies the data sources for the information required to answer those questions, and the data collection techniques (including software) applicable to those sources. Finally, since the original objectives can change with time and additional knowledge, they should be re-examined periodically, giving the strategy an iterative aspect as well.

In order provide specific examples for the uses of equipment data in a continuous improvement program, the presentation listed a number of application use cases that have been successfully deployed in 200mm facilities. These included (in general increasing order of complexity) substrate tracking, process execution tracking, product time measurement (aka wait time waste analysis), external sensor integration, component fingerprinting, and product traceability.

Systema3.png

A couple of these were then explained in more detail, showing how a basic tracking application could start by using a small subset of the equipment data, and then evolve over time to provide more advanced functions (and benefit!) as more detailed information was made available.

For those who want to understand this process in more depth, you are welcome to download the entire presentation using the link below, or call us to discuss how we can apply these ideas to your company!


“Equipment Data-Driven Continuous Improvement for 200mm Fabs"

Watch the Video

Topics: Semiconductor Industry, EDA/Interface A, Data Collection/Management

Software Interfaces and API Method Signatures Should Remain Consistent During a Product's Lifecycle

Posted by Derek Lindsey: Product Manager on Jan 28, 2016 1:07:00 PM

TheMartian.jpg

I recently read The Martian by Andy Weir. Since this information comes out on the first page of the book, I don’t think I’m spoiling too much to say that it is the story of an astronaut, Mark Watney, who is lost in a space storm on a mission to Mars. He is presumed dead by his crewmates and abandoned on the planet. Of course he is not dead and he has to use training, skill, ingenuity, and luck to survive long enough to be rescued. Several times throughout the adventure, he has to connect life supporting utilities, tanks, airlocks, and vehicles together using the connecting valves supplied on each component. Watney says, “I’ve said this many times before, but: Hurray for standardized valve systems!” This is obviously a work of fiction, but what would have happened if he had tried to attach a holding tank to the ascent vehicle but the valves had changed between versions?

Software customers should be able to have the same expectation as Mark Watney that the valves don’t change during the mission. In the case of software, we aren’t talking about physical valves. Rather we are talking about software interfaces and API method signatures. In a real sense, the consistency of these software signatures are as mission critical as the standardized valve connections were for the astronaut in The Martian. Changing the method signatures, at the very least, requires that the users of the software have to rebuild their applications. Often times such changes require software users to have to requalify their entire tool. This places undue burden on the users of the software. Software users should be able to reasonably expect that the interfaces and API remain constant through the life of the mission (i.e. within the version of the software including minor releases and patches). A side note on this topic: If Cimetrix product management determines that a piece of software has a bug or does not conform to the SEMI standards on which our products are based, changes will be made to correct the problem. Similarly, if NASA determined that one of their connectors did not conform to the spec, they would immediately resolve the issue for the item that was out of spec.

The Cimetrix release versioning process (see our January 14, 2016 blog) allows Cimetrix personnel and Cimetrix software users to be aware of what backward compatibility guarantees are made for a specific version of Cimetrix software.

We would like our software users to be able to say, “Hurray for compatible software versions!”

Topics: Semiconductor Industry, Doing Business with Cimetrix, Cimetrix Products

Cimetrix Partners with Linkgenesis That Will Serve as the Distributor for Its CIMPortal Plus Products in Korea

Posted by Erick Ko: Linkgenesis on Jan 19, 2016 1:12:00 PM

Linkgenesislogo_Blue.png

Last November Linkgenesis Corporation, based in Seoul, became the official Korean distributor of Cimetrix’ EDA/Interface A solution CIMPortal Plus.

This partnership was a perfect fit as we at Linkgenesis have been providing software products and development services in manufacturing information automation systems and the software testing area since 2001. In November of 2014, Linkgenesis merged with IT-Innovation, a communication software solution provider for semiconductor and LCD factories.

In cooperation with Cimetrix, Linkgenesis will be delivering the globally-proven EDA solution to Korean customers, and will also provide enhanced XGem/XGem300 GEM Driver harnessed with CIMPortal Plus so that customers using XGem/XGem300 can easily adapt their equipment to provide EDA capabilities. XGem/XGem300 GEM Driver is a Linkgenesis’ software driver supporting SEMI 300mm standards and is based on XCom SECS Driver that has been proven reliable for more than 200 customers. Linkgenesis’ software testing tool, MAT (Machine Auto Tester), has also been largely used by Korean mobile companies and automotive companies such as Samsung Electronics, LG Electronics, and Hyundai automotive groups.

SEMI EDA/Interface A standards were originally established in 2006 with Freeze-I and then updated with Freeze-II in 2010, but Korean chipmakers have not actively adopted Interface A standards in their production processes. However this is beginning to change as Samsung Electronics released its plan to introduce Interface A on its pilot line last August and SK hynix also started discussion of introducing Interface A.

In addition, Samsung Electronics plans to build a new line at its Pyeongtaek, South Korea and SK hynix’ plants to increase its production line at Cheongju and Yicheon, South Korea. However, according to Gartner’s forecast, semiconductor equipment spending by Samsung Electronics and SK hynix are going to slightly decrease this year. Samsung Electronics will invest $11.4 billion, which is a 13.5% decrease from 2014, and SK hynix will invest $4.8 billion this year, which is a 10.6% decrease from 2014.

We believe this new partnership between Linkgenesis and Cimetrix will provide a great deal of advantages to Korean customers in this emerging market, and will promote the increased interest in EDA/Interface A technology for chip manufactures.

Korea_2016_Banner_416x61.gifLinkgenesis will be exhibiting at SEMICON Korea 2016, which will be held in Seoul on January 27-29. Please stop by our booth in Hall C #1739 to see our product line as well as Cimetrix’ CIMPortal Plus, and discover how our software brings the latest innovations to the semiconductor manufacturing industry.

Topics: Semiconductor Industry, EDA/Interface A, Partners, Doing Business with Cimetrix, Cimetrix Products

Software Versioning Help Sets Users' Expectations

Posted by David Francis: Director of Product Management on Jan 14, 2016 1:02:00 PM

There are times in life when a surprise is a good thing. Like when you get a box of chocolates. We all remember the line from the movie Forrest Gump, “Life is like a box of chocolates, you never know what you’re gonna get.” When you install a new version of software however, surprises aren’t as enjoyable. With a new software release, customers need to be able to assess the effort and impact the new release will have on their current systems and procedures. Then they can evaluate whether the new features and functionality will be worth the effort to deploy the new software release. One way software companies can help communicate the impact a new software release may have on customers is by using a clearly defined release versioning procedure.

Change is good and software products that grow and mature over time, adding new features and eliminating unwanted behaviors, can remain healthy and viable over a long period of time. However, consistency and predictability are also important characteristics of good software products. So how do software companies balance these two seemingly competitive objectives?

Itunes.pngsemantic-versioning.pngMany software companies can do this is through the way they use software versioning. It is common for software companies to use a major.minor.patch.build software versioning scheme, for example iTunes 12.3.1. This type of software versioning allows the software company to communicate the scale and impact of the changes in the release to their customers. A change in the “major” release number indicates to customers that there are some significant changes in this release that may impact the way it interacts with the product. The customer will likely need to make code changes or procedural changes when upgrading to such a release. A change to the “minor” release number denotes that there are multiple changes in the release, but customers should see only minor, or possibly no changes, in the way they use the product. A minor release may include some small new features that could potentially require code changes if the customers wants/needs those new features. A “patch” release is generally used to address a specific issue and should not change the customer experience with the software. The build number is most often provided to help the software company when researching a question or customer reported defect.

Software versioning provides a way to set expectations with the customer about what is in the release and how it might affect the way they use the product. It can help take the surprise out of the process of installing a new software release. Life may be “like a box of chocolates,” but software releases shouldn’t be.

If you would like to learn more about the semiconductor industry, software best practices, and other topics related to new technologies, please subscribe to our email updates using the form in the upper right corner of this page.

Topics: Semiconductor Industry, EDA/Interface A, Doing Business with Cimetrix, Cimetrix Products

Rorze Corporation Celebrates 30 Years with Flair

Rorze1png.pngRorze2.pngRorze3.pngRorze4.pngLast fall I was invited to attend the 30th Anniversary Celebration for Rorze Corporation and their partner company ADTEC Plasma Technology. The event took place at the Fukuyama New Castle Hotel in Fukuyama, Japan on December 14, 2015. As you may know, Rorze is an official distributor of Cimetrix products in Japan so we have a long-standing relationship including Rorze handling Cimetrix products as well as being an investor in Cimetrix Incorporated itself.

Rorze was established in 1985 by Fumio Sakiya with an ambitious slogan and aim: Never follow the competition. We shall only develop and market products which we believe are superior to those already on the market, that is, products that will become global news. Originally starting with only six engineers, Rorze is now a global player in the semiconductor industry specializing in automation systems for transferring semiconductor wafers and liquid crystal displays.

On December 14 we gathered in Fukuyama for the celebration. With 28 tables and 250 guests attending, we celebrated with speeches from Rorze and ADTEC management and local dignitaries, and enjoyed a first-class Japanese meal complete with sake. There was plenty of time to meet new people, congratulate the two 30-year-old company members, and relax in traditional Japanese fashion.

The following day Rorze hosted a visit to the Itsukushima Shrine in Miyajima that is a UNESCO World Heritage Site. This is a Shinto shrine famous for its floating Torii gate and wild deer. After taking a short ferry ride to the island, we enjoyed a day of sightseeing and a traditional Japanese lunch near the shrine. The original shrine was built in the 6th century, so there is plenty of history surrounding this world-class cultural site.

It was an honor to attend a proud moment in the history for our partner Rorze, and we wish them many years of success as the leadership transitions from Sakiya san to our good friend Fujishiro san. Cheers and congratulations.

Topics: Semiconductor Industry, Doing Business with Cimetrix